1
# -*- coding: UTF-8 -*-
2
"""Directed graph production.
4
This module contains the code to produce an ordered directed graph of a
5
bzr branch, such as we display in the tree view at the top of the bzrk
9
__copyright__ = "Copyright © 2005 Canonical Ltd."
10
__author__ = "Scott James Remnant <scott@ubuntu.com>"
12
from bzrlib.revision import NULL_REVISION
13
from bzrlib.tsort import merge_sort
15
def linegraph(graph, start_revs, maxnum, broken_line_length = None,
16
graph_data = True, mainline_only = False):
17
"""Produce a directed graph of a bzr repository.
19
Returns a tuple of (line_graph, revid_index, columns_len) where
20
* line_graph is a list of tuples of (revid,
26
* revid_index is a dict of each revision with the key being the revid, and
27
the value the row index, and
28
* columns_len is the number of columns need to draw the line graph.
31
Node is a tuple of (column, colour) with column being a zero-indexed
32
column number of the graph that this revision represents and colour
33
being a zero-indexed colour (which doesn't specify any actual colour
34
in particular) to draw the node in.
36
Lines is a list of tuples which represent lines you should draw away
37
from the revision, if you also need to draw lines into the revision
38
you should use the lines list from the previous iteration. Each
39
typle in the list is in the form (start, end, colour) with start and
40
end being zero-indexed column numbers and colour as in node.
42
It's up to you how to actually draw the nodes and lines (straight,
43
curved, kinked, etc.) and to pick the actual colours for each index.
49
for (revid, parent_revids) in graph.iter_ancestry(start_revs):
50
if parent_revids is None:
53
if parent_revids == (NULL_REVISION,):
54
graph_parents[revid] = ()
56
graph_parents[revid] = parent_revids
57
for parent in parent_revids:
58
graph_children.setdefault(parent, []).append(revid)
59
graph_children.setdefault(revid, [])
61
for ghost_child in graph_children[ghost]:
62
graph_parents[ghost_child] = [p for p in graph_parents[ghost_child]
64
graph_parents["top:"] = start_revs
66
if len(graph_parents)>0:
67
merge_sorted_revisions = merge_sort(
72
merge_sorted_revisions = ()
75
merge_sorted_revisions = [elem for elem in merge_sorted_revisions \
78
assert merge_sorted_revisions[0][1] == "top:"
79
merge_sorted_revisions = merge_sorted_revisions[1:]
84
# This will hold an item for each "branch". For a revisions, the revsion
85
# number less the least significant digit is the branch_id, and used as the
86
# key for the dict. Hence revision with the same revsion number less the
87
# least significant digit are considered to be in the same branch line.
88
# e.g.: for revisions 290.12.1 and 290.12.2, the branch_id would be 290.12,
89
# and these two revisions will be in the same branch line. Each value is
90
# a list of rev_indexes in the branch.
95
for (rev_index, (sequence_number,
99
end_of_merge)) in enumerate(merge_sorted_revisions):
100
if maxnum and rev_index >= maxnum:
102
revid_index[revid] = rev_index
104
parents = graph_parents[revid]
105
linegraph.append([revid,
113
revno_index[revno_sequence] = rev_index
115
branch_id = revno_sequence[0:-1]
118
if branch_id not in branch_lines:
120
branch_lines[branch_id] = branch_line
122
branch_line = branch_lines[branch_id]
124
branch_line.append(rev_index)
127
branch_ids = branch_lines.keys()
129
def branch_id_cmp(x, y):
130
"""Compaire branch_id's first by the number of digits, then reversed
136
return cmp(len_x, len_y)
138
branch_ids.sort(branch_id_cmp)
139
# This will hold a tuple of (child_index, parent_index, col_index) for each
140
# line that needs to be drawn. If col_index is not none, then the line is
141
# drawn along that column, else the the line can be drawn directly between
142
# the child and parent because either the child and parent are in the same
143
# branch line, or the child and parent are 1 row apart.
145
empty_column = [False for i in range(len(graph_parents))]
146
# This will hold a bit map for each cell. If the cell is true, then the
147
# cell allready contains a node or line. This use when deciding what column
148
# to place a branch line or line in, without it overlaping something else.
149
columns = [list(empty_column)]
152
for branch_id in branch_ids:
153
branch_line = branch_lines[branch_id]
155
# Find the col_index for the direct parent branch. This will be the
156
# starting point when looking for a free column.
159
if len(branch_id) > 1:
160
parent_revno = branch_id[0:-1]
161
if parent_revno in revno_index:
162
parent_index = revno_index[parent_revno]
163
parent_node = linegraph[parent_index][1]
165
parent_col_index = parent_node[0]
168
col_search_order = _branch_line_col_search_order(columns,
170
color = reduce(lambda x, y: x+y, branch_id, 0)
174
last_rev_index = None
175
for rev_index in branch_line:
177
if broken_line_length and \
178
rev_index - last_rev_index > broken_line_length:
179
line_range.append(last_rev_index+1)
180
line_range.append(rev_index-1)
182
line_range.extend(range(last_rev_index+1, rev_index))
184
line_range.append(rev_index)
185
last_rev_index = rev_index
188
if broken_line_length and \
189
parent_index - last_rev_index > broken_line_length:
190
line_range.append(last_rev_index+1)
192
line_range.extend(range(last_rev_index+1, parent_index))
194
col_index = _find_free_column(columns,
198
node = (col_index, color)
199
for rev_index in branch_line:
200
linegraph[rev_index][1] = node
201
columns[col_index][rev_index] = True
203
for rev_index in branch_line:
208
end_of_merge) = merge_sorted_revisions[rev_index]
210
linegraph[rev_index][4] = graph_children[revid]
211
col_index = linegraph[rev_index][1][0]
213
for parent_revid in graph_parents[revid]:
214
if parent_revid in revid_index:
216
parent_index = revid_index[parent_revid]
217
parent_node = linegraph[parent_index][1]
219
parent_col_index = parent_node[0]
221
parent_col_index = None
223
_line_col_search_order(columns,
227
# If this line is really long, break it.
228
if len(branch_id) > 0 and \
229
broken_line_length and \
230
parent_index - rev_index > broken_line_length:
231
child_line_col_index = \
232
_find_free_column(columns,
236
_mark_column_as_used(columns,
237
child_line_col_index,
240
# Recall _line_col_search_order to reset it back to
243
_line_col_search_order(columns,
246
parent_col_line_index = \
247
_find_free_column(columns,
251
_mark_column_as_used(columns,
252
parent_col_line_index,
254
lines.append((rev_index,
256
(child_line_col_index,
257
parent_col_line_index)))
259
line_col_index = col_index
260
if parent_index - rev_index >1:
261
line_range = range(rev_index + 1, parent_index)
263
_find_free_column(columns,
267
_mark_column_as_used(columns,
270
lines.append((rev_index,
274
for (child_index, parent_index, line_col_indexes) in lines:
275
(child_col_index, child_color) = linegraph[child_index][1]
276
(parent_col_index, parent_color) = linegraph[parent_index][1]
278
if len(line_col_indexes) == 1:
279
if parent_index - child_index == 1:
280
linegraph[child_index][2].append(
285
# line from the child's column to the lines column
286
linegraph[child_index][2].append(
290
# lines down the line's column
291
for line_part_index in range(child_index+1, parent_index-1):
292
linegraph[line_part_index][2].append(
293
(line_col_indexes[0],
296
# line from the line's column to the parent's column
297
linegraph[parent_index-1][2].append(
298
(line_col_indexes[0],
303
# line from the child's column to the lines column
304
linegraph[child_index][2].append(
309
linegraph[child_index+1][2].append(
310
(line_col_indexes[0],
315
linegraph[parent_index-2][2].append(
319
# line from the line's column to the parent's column
320
linegraph[parent_index-1][2].append(
321
(line_col_indexes[1],
324
return (linegraph, revid_index, len(columns))
326
return (linegraph, revid_index, 0)
329
def _branch_line_col_search_order(columns, parent_col_index):
330
for col_index in range(parent_col_index, len(columns)):
332
for col_index in range(parent_col_index-1, -1, -1):
335
def _line_col_search_order(columns, parent_col_index, child_col_index):
336
if parent_col_index is not None:
337
max_index = max(parent_col_index, child_col_index)
338
min_index = min(parent_col_index, child_col_index)
339
for col_index in range(max_index, min_index -1, -1):
342
max_index = child_col_index
343
min_index = child_col_index
344
yield child_col_index
346
while max_index + i < len(columns) or \
348
if max_index + i < len(columns):
350
if min_index - i > -1:
354
def _find_free_column(columns, empty_column, col_search_order, line_range):
355
for col_index in col_search_order:
356
column = columns[col_index]
357
has_overlaping_line = False
358
for row_index in line_range:
359
if column[row_index]:
360
has_overlaping_line = True
362
if not has_overlaping_line:
365
col_index = len(columns)
366
column = list(empty_column)
367
columns.append(column)
370
def _mark_column_as_used(columns, col_index, line_range):
371
column = columns[col_index]
372
for row_index in line_range:
373
column[row_index] = True
375
def same_branch(a, b):
376
"""Return whether we think revisions a and b are on the same branch."""
377
if len(a.parent_ids) == 1:
378
# Defacto same branch if only parent
380
elif a.committer == b.committer:
381
# Same committer so may as well be
2
# -*- coding: UTF-8 -*-
3
"""Directed graph production.
5
This module contains the code to produce an ordered directed graph of a
6
bzr branch, such as we display in the tree view at the top of the bzrk
10
__copyright__ = "Copyright © 2005 Canonical Ltd."
11
__author__ = "Scott James Remnant <scott@ubuntu.com>"
14
from bzrlib.errors import NoSuchRevision
17
class DummyRevision(object):
18
"""Dummy bzr revision.
20
Sometimes, especially in older bzr branches, a revision is referenced
21
as the parent of another but not actually present in the branch's store.
22
When this happens we use an instance of this class instead of the real
23
Revision object (which we can't get).
26
def __init__(self, revid):
27
self.revision_id = revid
30
self.message = self.revision_id
33
def graph(branch, start):
34
"""Produce a directed graph of a bzr branch.
36
Traverses the branch revision tree starting at start and produces an
37
ordered list of revisions such that a revision always comes after
38
any revision it is the parent of. It also tries to make a reasonably
39
not-too-stupid decision whether a parent revision is on the same
40
logical branch, as that information is not available with bzr.
42
For each revision it then yields a tuple of (revision, node, lines).
43
If the revision is only referenced in the branch and not present in the
44
store, revision will be a DummyRevision object, otherwise it is the bzr
45
Revision object with the meta-data for the revision.
47
Node is a tuple of (column, colour) with column being a zero-indexed
48
column number of the graph that this revision represents and colour
49
being a zero-indexed colour (which doesn't specify any actual colour
50
in particular) to draw the node in.
52
Lines is a list of tuples which represent lines you should draw away
53
from the revision, if you also need to draw lines into the revision
54
you should use the lines list from the previous iteration. Each
55
typle in the list is in the form (start, end, colour) with start and
56
end being zero-indexed column numbers and colour as in node.
58
It's up to you how to actually draw the nodes and lines (straight,
59
curved, kinked, etc.) and to pick the actual colours for each index.
61
revisions = { start: branch.get_revision(start) }
62
distances = { start: 0 }
63
colours = { start: 0 }
66
# Sort the revisions; the fastest way to do this is to visit each node
67
# as few times as possible (by keeping the todo list in a set) and record
68
# the largest distance to it before queuing up the children if we
69
# increased the distance. This produces the sort order we desire
73
revision = revisions[revid]
74
distance = distances[revid] + 1
75
colour = colours[revid]
78
for parent_id in revision.parent_ids:
79
# Check whether there's any point re-processing this
80
if parent_id in distances and distances[parent_id] >= distance:
83
# Get the parent from the cache, or put it in the cache
85
parent = revisions[parent_id]
88
parent = revisions[parent_id] \
89
= branch.get_revision(parent_id)
90
except NoSuchRevision:
91
parent = revisions[parent_id] = DummyRevision(parent_id)
93
# Make a guess as to whether this node represents the same
94
# branch, or a new one. Penalise same branches in the distance
95
# stakes to give new ones a chance to appear first as one set.
96
if len(revision.parent_ids) == 1:
97
colours[parent_id] = colour
98
distances[parent_id] = distance
99
elif revision.committer == parent.committer and not reused:
100
colours[parent_id] = colour
101
distances[parent_id] = distance
104
colours[parent_id] = last_colour = last_colour + 1
105
distances[parent_id] = distance + 10
109
# Now iterate the revisions again, but this time in list order rather
110
# than traversing the tree, and build up the graph lines. We do this
111
# by keeping a list of "hanging parents", which can only be removed
112
# once we encounter the revision being hung.
114
for revid in sorted(distances, key=distances.get):
119
for h_idx, hang in enumerate(hanging):
121
# We've matched a hanging revision, so need to output a node
123
node = (h_idx, colours[revid])
125
# Now we need to hang its parents, we put them at the point
126
# the old column was so anything to the right of this has
127
# to move outwards to make room. We also try and collapse
128
# hangs to keep the graph small.
129
for parent_id in revisions[revid].parent_ids:
131
n_idx = new_hanging.index(parent_id)
133
n_idx = len(new_hanging)
134
new_hanging.append(parent_id)
135
lines.append((h_idx, n_idx, colours[parent_id]))
137
# Revision keeps on hanging, adjust for any change in the
138
# graph shape and try to collapse hangs to keep the graph
141
n_idx = new_hanging.index(hang)
143
n_idx = len(new_hanging)
144
new_hanging.append(hang)
145
lines.append((h_idx, n_idx, colours[hang]))
146
hanging = new_hanging
148
yield (revisions[revid], node, lines)