1
# -*- coding: UTF-8 -*-
2
"""Directed graph production.
4
This module contains the code to produce an ordered directed graph of a
5
bzr branch, such as we display in the tree view at the top of the bzrk
9
__copyright__ = "Copyright © 2005 Canonical Ltd."
10
__author__ = "Scott James Remnant <scott@ubuntu.com>"
13
from bzrlib.revision import Revision
14
from bzrlib.tsort import merge_sort
17
class DummyRevision(Revision):
18
"""Dummy bzr revision.
20
Sometimes, especially in older bzr branches, a revision is referenced
21
as the parent of another but not actually present in the branch's store.
22
When this happens we use an instance of this class instead of the real
23
Revision object (which we can't get).
25
def __init__(self, revid):
26
super(DummyRevision, self).__init__(revid)
31
class RevisionProxy(object):
32
"""A revision proxy object.
34
This will demand load the revision it represents when the committer or
35
message attributes are accessed in order to populate them. It is
36
constructed with the revision id and parent_ids list and a repository
37
object to request the revision from when needed.
40
def __init__(self, revid, parent_ids, repository):
41
self.revision_id = revid
42
self.parent_ids = parent_ids
43
self._repository = repository
46
def _get_attribute_getter(attr):
47
def get_attribute(self):
48
if self._revision is None:
50
return getattr(self._revision, attr)
52
committer = property(_get_attribute_getter('committer'))
53
message = property(_get_attribute_getter('message'))
54
properties = property(_get_attribute_getter('properties'))
55
timestamp = property(_get_attribute_getter('timestamp'))
56
timezone = property(_get_attribute_getter('timezone'))
59
"""Load the revision object."""
60
self._revision = self._repository.get_revision(self.revision_id)
63
class DistanceMethod(object):
65
def __init__(self, branch, start):
70
self.children_of_id = {start: set()}
71
self.parent_ids_of = {}
72
self.colours = { start: 0 }
74
self.direct_parent_of = {}
77
def fill_caches(self):
78
graph = self.branch.repository.get_revision_graph_with_ghosts([self.start])
79
for revid in graph.ghosts:
80
self.cache_revision(DummyRevision(revid))
81
for revid, parents in graph.get_ancestors().items():
82
self.cache_revision(RevisionProxy(revid, parents, self.branch.repository))
84
def cache_revision(self, revision):
85
"Set the caches for a newly retrieved revision."""
86
revid = revision.revision_id
87
# Build a revision cache
88
self.revisions[revid] = revision
89
# Build a children dictionary
90
for parent_id in revision.parent_ids:
91
self.children_of_id.setdefault(parent_id, set()).add(revision)
92
# Build a parents dictionnary, where redundant parents will be removed,
93
# and that will be passed along tothe rest of program.
94
if len(revision.parent_ids) != len(set(revision.parent_ids)):
95
# fix the parent_ids list.
97
parent_ids_set = set()
98
for parent_id in revision.parent_ids:
99
if parent_id in parent_ids_set:
101
parent_ids.append(parent_id)
102
parent_ids_set.add(parent_id)
103
revision.parent_ids = parent_ids
104
self.parent_ids_of[revision] = list(revision.parent_ids)
105
self.graph[revid] = revision.parent_ids
107
def make_children_map(self):
108
revisions = self.revisions
109
return dict((revisions[revid], c)
110
for (revid, c) in self.children_of_id.iteritems())
112
def sort_revisions(self, sorted_revids, maxnum):
113
revisions = self.revisions
114
parent_ids_of = self.parent_ids_of
115
children_of_id = self.children_of_id
116
# Try to compact sequences of revisions on the same branch.
119
expected_id = sorted_revids[0]
122
revid = sorted_revids.pop(0)
123
if revid != expected_id:
124
skipped_revids.append(revid)
126
revision = revisions[revid]
127
for child in children_of_id[revid]:
128
# postpone if any child is missing
129
if child.revision_id not in distances:
130
if expected_id not in pending_ids:
131
pending_ids.append(expected_id)
132
expected_id = pending_ids.pop(0)
133
skipped_revids.append(revid)
134
sorted_revids[:0] = skipped_revids
135
del skipped_revids[:]
138
# all children are here, push!
139
distances[revid] = len(distances)
140
if maxnum is not None and len(distances) > maxnum:
141
# bail out early if a limit was specified
142
sorted_revids[:0] = skipped_revids
143
for revid in sorted_revids:
144
distances[revid] = len(distances)
146
# all parents will need to be pushed as soon as possible
147
for parent in parent_ids_of[revision]:
148
if parent not in pending_ids:
149
pending_ids.insert(0, parent)
152
expected_id = pending_ids.pop(0)
153
# if the next expected revid has already been skipped, requeue
154
# the skipped ids, except those that would go right back to the
156
if expected_id in skipped_revids:
157
pos = skipped_revids.index(expected_id)
158
sorted_revids[:0] = skipped_revids[pos:]
159
del skipped_revids[pos:]
160
self.distances = distances
161
return sorted(distances, key=distances.get)
163
def choose_colour(self, revid):
164
revision = self.revisions[revid]
165
children_of_id = self.children_of_id
166
parent_ids_of = self.parent_ids_of
167
colours = self.colours
169
the_children = children_of_id[revid]
170
if len(the_children) == 1:
171
[child] = the_children
172
if len(parent_ids_of[child]) == 1:
173
# one-one relationship between parent and child, same
175
colours[revid] = colours[child.revision_id]
177
self.choose_colour_one_child(revision, child)
179
self.choose_colour_many_children(revision, the_children)
181
def choose_colour_one_child(self, revision, child):
182
revid = revision.revision_id
183
direct_parent_of = self.direct_parent_of
184
revisions = self.revisions
185
# one child with multiple parents, the first parent with
186
# the same committer gets the colour
187
direct_parent = direct_parent_of.get(child)
188
if direct_parent is None:
189
# if it has not been found yet, find it now and remember
190
for parent_id in self.parent_ids_of[child]:
191
parent_revision = revisions[parent_id]
192
if parent_revision.committer == child.committer:
193
# found the first parent with the same committer
194
direct_parent = parent_revision
195
direct_parent_of[child] = direct_parent
197
if direct_parent == revision:
198
self.colours[revid] = self.colours[child.revision_id]
200
self.colours[revid] = self.last_colour = self.last_colour + 1
202
def choose_colour_many_children(self, revision, the_children):
203
"""Colour revision revision."""
204
revid = revision.revision_id
205
direct_parent_of = self.direct_parent_of
206
# multiple children, get the colour of the last displayed child
207
# with the same committer which does not already have its colour
210
for child in the_children:
211
if child.committer != revision.committer:
213
direct_parent = direct_parent_of.get(child)
214
if direct_parent == revision:
215
self.colours[revid] = self.colours[child.revision_id]
217
# FIXME: Colouring based on whats been displayed MUST be done with
218
# knowledge of the revisions being output.
219
# until the refactoring to fold graph() into this more compactly is
220
# done, I've disabled this reuse. RBC 20060403
221
# if direct_parent is None:
222
# available[child] = distances[child.revision_id]
223
# .. it will be something like available[child] = \
224
# revs[child.revision_id][0] - which is the sequence number
227
sorted_children = sorted(available, key=available.get)
228
child = sorted_children[-1]
229
direct_parent_of[child] = revision
230
self.colours[revid] = self.colours[child.revision_id]
232
# no candidate children is available, pick the next
234
self.colours[revid] = self.last_colour = self.last_colour + 1
237
def distances(branch, start):
238
"""Sort the revisions.
240
Traverses the branch revision tree starting at start and produces an
241
ordered list of revisions such that a revision always comes after
242
any revision it is the parent of.
244
Returns a tuple of (revids, revisions, colours, children)
246
distance = DistanceMethod(branch, start)
247
distance.fill_caches()
248
distance.merge_sorted = merge_sort(distance.graph, distance.start)
249
children = distance.make_children_map()
251
for seq, revid, merge_depth, end_of_merge in distance.merge_sorted:
252
distance.choose_colour(revid)
254
revisions = distance.revisions
255
colours = distance.colours
256
parent_ids_of = distance.parent_ids_of
257
return (revisions, colours, children, parent_ids_of, distance.merge_sorted)
260
def graph(revisions, colours, merge_sorted):
261
"""Produce a directed graph of a bzr branch.
263
For each revision it then yields a tuple of (revision, node, lines).
264
If the revision is only referenced in the branch and not present in the
265
store, revision will be a DummyRevision object, otherwise it is the bzr
266
Revision object with the meta-data for the revision.
268
Node is a tuple of (column, colour) with column being a zero-indexed
269
column number of the graph that this revision represents and colour
270
being a zero-indexed colour (which doesn't specify any actual colour
271
in particular) to draw the node in.
273
Lines is a list of tuples which represent lines you should draw away
274
from the revision, if you also need to draw lines into the revision
275
you should use the lines list from the previous iteration. Each
276
typle in the list is in the form (start, end, colour) with start and
277
end being zero-indexed column numbers and colour as in node.
279
It's up to you how to actually draw the nodes and lines (straight,
280
curved, kinked, etc.) and to pick the actual colours for each index.
282
if not len(merge_sorted):
284
# split merge_sorted into a map:
286
# FIXME: get a hint on this from the merge_sorted data rather than
287
# calculating it ourselves
288
# mapping from rev_id to the sequence number of the next lowest rev
290
# mapping from rev_id to next-in-branch-revid - may be None for end
292
next_branch_revid = {}
293
# the stack we are in in the sorted data for determining which
294
# next_lower_rev to set. It is a stack which has one list at each
295
# depth - the ids at that depth that need the same id allocated.
297
for seq, revid, indent, end_merge in merge_sorted:
298
revs[revid] = (seq, indent, end_merge)
299
if indent == len(current_stack):
300
# new merge group starts
301
current_stack.append([revid])
302
elif indent == len(current_stack) - 1:
303
# part of the current merge group
304
current_stack[-1].append(revid)
306
# end of a merge group
307
while current_stack[-1]:
308
stack_rev_id = current_stack[-1].pop()
309
# record the next lower rev for this rev:
310
next_lower_rev[stack_rev_id] = seq
311
# if this followed a non-end-merge rev in this group note that
312
if len(current_stack[-1]):
313
if not revs[current_stack[-1][-1]][2]:
314
next_branch_revid[current_stack[-1][-1]] = stack_rev_id
316
# append to the now-current merge group
317
current_stack[-1].append(revid)
318
# assign a value to all the depth 0 revisions
319
while current_stack[-1]:
320
stack_rev_id = current_stack[-1].pop()
321
# record the next lower rev for this rev:
322
next_lower_rev[stack_rev_id] = len(merge_sorted)
323
# if this followed a non-end-merge rev in this group note that
324
if len(current_stack[-1]):
325
if not revs[current_stack[-1][-1]][2]:
326
next_branch_revid[current_stack[-1][-1]] = stack_rev_id
328
# a list of the current revisions we are drawing lines TO indicating
329
# the sequence of their lines on the screen.
330
# i.e. [A, B, C] means that the line to A, to B, and to C are in
331
# (respectively), 0, 1, 2 on the screen.
332
hanging = [merge_sorted[0][1]]
333
for seq, revid, indent, end_merge in merge_sorted:
334
# a list of the lines to draw: their position in the
335
# previous row, their position in this row, and the colour
336
# (which is the colour they are routing to).
341
for h_idx, hang in enumerate(hanging):
342
# one of these will be the current lines node:
343
# we are drawing a line. h_idx
345
# we have found the current lines node
346
node = (h_idx, colours[revid])
348
# note that we might have done the main parent
349
drawn_parents = set()
351
def draw_line(from_idx, to_idx, revision_id):
353
n_idx = new_hanging.index(revision_id)
355
# force this to be vertical at the place this rev was
357
new_hanging.insert(to_idx, revision_id)
359
lines.append((from_idx, n_idx, colours[revision_id]))
362
# we want to draw a line to the next commit on 'this' branch
364
# drop this line first.
365
parent_id = next_branch_revid[revid]
366
draw_line(h_idx, h_idx, parent_id)
367
# we have drawn this parent
368
drawn_parents.add(parent_id)
370
# this is the last revision in a 'merge', show where it came from
371
if len(revisions[revid].parent_ids) > 1:
373
# parents means this commit was a merge, and being
374
# the end point of a merge group means that all
375
# the parent revisions were merged into branches
376
# to the left of this before this was committed
377
# - so we want to show this as a new branch from
379
# to do this, we show the parent with the lowest
380
# sequence number, which is the one that this
381
# branch 'spawned from', and no others.
382
# If this sounds like a problem, remember that:
383
# if the parent was not already in our mainline
384
# it would show up as a merge into this making
385
# this not the end of a merge-line.
386
lowest = len(merge_sorted)
387
for parent_id in revisions[revid].parent_ids:
388
if revs[parent_id][0] < lowest:
389
lowest = revs[parent_id][0]
390
assert lowest != len(merge_sorted)
391
draw_line(h_idx, len(new_hanging), merge_sorted[lowest][1])
392
drawn_parents.add(merge_sorted[lowest][1])
393
elif len(revisions[revid].parent_ids) == 1:
394
# only one parent, must show this link to be useful.
395
parent_id = revisions[revid].parent_ids[0]
396
draw_line(h_idx, len(new_hanging), parent_id)
397
drawn_parents.add(parent_id)
399
# what do we want to draw lines to from here:
400
# each parent IF its relevant.
402
# Now we need to hang its parents, we put them at the point
403
# the old column was so anything to the right of this has
404
# to move outwards to make room. We also try and collapse
405
# hangs to keep the graph small.
406
# RBC: we do not draw lines to parents that were already merged
407
# unless its the last revision in a merge group.
408
for parent_id in revisions[revid].parent_ids:
409
if parent_id in drawn_parents:
411
parent_seq = revs[parent_id][0]
412
parent_depth = revs[parent_id][1]
413
if parent_depth == indent + 1:
414
# The parent was a merge into this branch determine if
415
# it was already merged into the mainline via a
416
# different merge: if all revisions between us and
417
# parent_seq have a indent greater than there are no
418
# revisions with a lower indent than us.
419
# We do not use 'parent_depth < indent' because that
420
# would allow un-uniqueified merges to show up, and
421
# merge_sorted should take care of that for us (but
422
# does not trim the values)
423
if parent_seq < next_lower_rev[revid]:
424
draw_line(h_idx, len(new_hanging), parent_id)
425
elif parent_depth == indent and parent_seq == seq + 1:
426
# part of this branch
427
draw_line(h_idx, len(new_hanging), parent_id)
429
# draw a line from the previous position of this line to the
431
# h_idx is the old position.
432
# new_indent is the new position.
433
draw_line(h_idx, len(new_hanging), hang)
434
# we've calculated the row, assign new_hanging to hanging to setup for
436
hanging = new_hanging
438
yield (revisions[revid], node, lines)
441
def same_branch(a, b):
442
"""Return whether we think revisions a and b are on the same branch."""
443
if len(a.parent_ids) == 1:
444
# Defacto same branch if only parent
446
elif a.committer == b.committer:
447
# Same committer so may as well be
1
# -*- coding: UTF-8 -*-
2
"""Directed graph production.
4
This module contains the code to produce an ordered directed graph of a
5
bzr branch, such as we display in the tree view at the top of the bzrk
9
__copyright__ = "Copyright © 2005 Canonical Ltd."
10
__author__ = "Scott James Remnant <scott@ubuntu.com>"
12
from bzrlib.tsort import merge_sort
14
def linegraph(repository, start_revs, maxnum, broken_line_length = None,
15
graph_data = True, mainline_only = False):
16
"""Produce a directed graph of a bzr repository.
18
Returns a tuple of (line_graph, revid_index, columns_len) where
19
* line_graph is a list of tuples of (revid,
25
* revid_index is a dict of each revision with the key being the revid, and
26
the value the row index, and
27
* columns_len is the number of columns need to draw the line graph.
30
Node is a tuple of (column, colour) with column being a zero-indexed
31
column number of the graph that this revision represents and colour
32
being a zero-indexed colour (which doesn't specify any actual colour
33
in particular) to draw the node in.
35
Lines is a list of tuples which represent lines you should draw away
36
from the revision, if you also need to draw lines into the revision
37
you should use the lines list from the previous iteration. Each
38
typle in the list is in the form (start, end, colour) with start and
39
end being zero-indexed column numbers and colour as in node.
41
It's up to you how to actually draw the nodes and lines (straight,
42
curved, kinked, etc.) and to pick the actual colours for each index.
45
graph = repository.get_graph()
48
for (revid, parent_revids) in graph.iter_ancestry(start_revs):
49
graph_parents[revid] = parent_revids
50
graph_children[revid] = []
52
graph_parents["top:"] = start_revs
54
if len(graph_parents)>0:
55
merge_sorted_revisions = merge_sort(
60
merge_sorted_revisions = ()
63
merge_sorted_revisions = [elem for elem in merge_sorted_revisions \
66
assert merge_sorted_revisions[0][1] == "top:"
67
merge_sorted_revisions = merge_sorted_revisions[1:]
72
# This will hold an item for each "branch". For a revisions, the revsion
73
# number less the least significant digit is the branch_id, and used as the
74
# key for the dict. Hence revision with the same revsion number less the
75
# least significant digit are considered to be in the same branch line.
76
# e.g.: for revisions 290.12.1 and 290.12.2, the branch_id would be 290.12,
77
# and these two revisions will be in the same branch line. Each value is
78
# a list of rev_indexes in the branch.
83
for (rev_index, (sequence_number,
87
end_of_merge)) in enumerate(merge_sorted_revisions):
88
if maxnum and rev_index >= maxnum:
90
revid_index[revid] = rev_index
92
parents = graph_parents[revid]
93
for parent_revid in parents:
94
graph_children[parent_revid].append(revid)
96
linegraph.append([revid,
104
revno_index[revno_sequence] = rev_index
106
branch_id = revno_sequence[0:-1]
109
if branch_id not in branch_lines:
111
branch_lines[branch_id] = branch_line
113
branch_line = branch_lines[branch_id]
115
branch_line.append(rev_index)
118
branch_ids = branch_lines.keys()
120
def branch_id_cmp(x, y):
121
"""Compaire branch_id's first by the number of digits, then reversed
127
return cmp(len_x, len_y)
129
branch_ids.sort(branch_id_cmp)
130
# This will hold a tuple of (child_index, parent_index, col_index) for each
131
# line that needs to be drawn. If col_index is not none, then the line is
132
# drawn along that column, else the the line can be drawn directly between
133
# the child and parent because either the child and parent are in the same
134
# branch line, or the child and parent are 1 row apart.
136
empty_column = [False for i in range(len(graph_parents))]
137
# This will hold a bit map for each cell. If the cell is true, then the
138
# cell allready contains a node or line. This use when deciding what column
139
# to place a branch line or line in, without it overlaping something else.
140
columns = [list(empty_column)]
143
for branch_id in branch_ids:
144
branch_line = branch_lines[branch_id]
146
# Find the col_index for the direct parent branch. This will be the
147
# starting point when looking for a free column.
150
if len(branch_id) > 1:
151
parent_revno = branch_id[0:-1]
152
if parent_revno in revno_index:
153
parent_index = revno_index[parent_revno]
154
parent_node = linegraph[parent_index][1]
156
parent_col_index = parent_node[0]
159
col_search_order = _branch_line_col_search_order(columns,
161
color = reduce(lambda x, y: x+y, branch_id, 0)
165
last_rev_index = None
166
for rev_index in branch_line:
168
if broken_line_length and \
169
rev_index - last_rev_index > broken_line_length:
170
line_range.append(last_rev_index+1)
171
line_range.append(rev_index-1)
173
line_range.extend(range(last_rev_index+1, rev_index))
175
line_range.append(rev_index)
176
last_rev_index = rev_index
179
if broken_line_length and \
180
parent_index - last_rev_index > broken_line_length:
181
line_range.append(last_rev_index+1)
183
line_range.extend(range(last_rev_index+1, parent_index))
185
col_index = _find_free_column(columns,
189
node = (col_index, color)
190
for rev_index in branch_line:
191
linegraph[rev_index][1] = node
192
columns[col_index][rev_index] = True
194
for rev_index in branch_line:
199
end_of_merge) = merge_sorted_revisions[rev_index]
201
linegraph[rev_index][4] = graph_children[revid]
202
col_index = linegraph[rev_index][1][0]
204
for parent_revid in graph_parents[revid]:
205
if parent_revid in revid_index:
207
parent_index = revid_index[parent_revid]
208
parent_node = linegraph[parent_index][1]
210
parent_col_index = parent_node[0]
212
parent_col_index = None
214
_line_col_search_order(columns,
218
# If this line is really long, break it.
219
if len(branch_id) > 0 and \
220
broken_line_length and \
221
parent_index - rev_index > broken_line_length:
222
child_line_col_index = \
223
_find_free_column(columns,
227
_mark_column_as_used(columns,
228
child_line_col_index,
231
# Recall _line_col_search_order to reset it back to
234
_line_col_search_order(columns,
237
parent_col_line_index = \
238
_find_free_column(columns,
242
_mark_column_as_used(columns,
243
parent_col_line_index,
245
lines.append((rev_index,
247
(child_line_col_index,
248
parent_col_line_index)))
250
line_col_index = col_index
251
if parent_index - rev_index >1:
252
line_range = range(rev_index + 1, parent_index)
254
_find_free_column(columns,
258
_mark_column_as_used(columns,
261
lines.append((rev_index,
265
for (child_index, parent_index, line_col_indexes) in lines:
266
(child_col_index, child_color) = linegraph[child_index][1]
267
(parent_col_index, parent_color) = linegraph[parent_index][1]
269
if len(line_col_indexes) == 1:
270
if parent_index - child_index == 1:
271
linegraph[child_index][2].append(
276
# line from the child's column to the lines column
277
linegraph[child_index][2].append(
281
# lines down the line's column
282
for line_part_index in range(child_index+1, parent_index-1):
283
linegraph[line_part_index][2].append(
284
(line_col_indexes[0],
287
# line from the line's column to the parent's column
288
linegraph[parent_index-1][2].append(
289
(line_col_indexes[0],
294
# line from the child's column to the lines column
295
linegraph[child_index][2].append(
300
linegraph[child_index+1][2].append(
301
(line_col_indexes[0],
306
linegraph[parent_index-2][2].append(
310
# line from the line's column to the parent's column
311
linegraph[parent_index-1][2].append(
312
(line_col_indexes[1],
315
return (linegraph, revid_index, len(columns))
317
return (linegraph, revid_index, 0)
320
def _branch_line_col_search_order(columns, parent_col_index):
321
for col_index in range(parent_col_index, len(columns)):
323
for col_index in range(parent_col_index-1, -1, -1):
326
def _line_col_search_order(columns, parent_col_index, child_col_index):
327
if parent_col_index is not None:
328
max_index = max(parent_col_index, child_col_index)
329
min_index = min(parent_col_index, child_col_index)
330
for col_index in range(max_index, min_index -1, -1):
333
max_index = child_col_index
334
min_index = child_col_index
335
yield child_col_index
337
while max_index + i < len(columns) or \
339
if max_index + i < len(columns):
341
if min_index - i > -1:
345
def _find_free_column(columns, empty_column, col_search_order, line_range):
346
for col_index in col_search_order:
347
column = columns[col_index]
348
has_overlaping_line = False
349
for row_index in line_range:
350
if column[row_index]:
351
has_overlaping_line = True
353
if not has_overlaping_line:
356
col_index = len(columns)
357
column = list(empty_column)
358
columns.append(column)
361
def _mark_column_as_used(columns, col_index, line_range):
362
column = columns[col_index]
363
for row_index in line_range:
364
column[row_index] = True
366
def same_branch(a, b):
367
"""Return whether we think revisions a and b are on the same branch."""
368
if len(a.parent_ids) == 1:
369
# Defacto same branch if only parent
371
elif a.committer == b.committer:
372
# Same committer so may as well be