/b-gtk/fix-viz

To get this branch, use:
bzr branch http://gegoxaren.bato24.eu/bzr/b-gtk/fix-viz
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# -*- coding: UTF-8 -*-
"""Directed graph production.

This module contains the code to produce an ordered directed graph of a
bzr branch, such as we display in the tree view at the top of the bzrk
window.
"""

__copyright__ = "Copyright © 2005 Canonical Ltd."
__author__    = "Scott James Remnant <scott@ubuntu.com>"

from bzrlib.tsort import merge_sort

def linegraph(branch, start, maxnum):
    """Produce a directed graph of a bzr branch.

    Returns a list of tuples of (revid,
                                 node,
                                 lines,
                                 parents,
                                 children,
                                 revno_sequence).

    Node is a tuple of (column, colour) with column being a zero-indexed
    column number of the graph that this revision represents and colour
    being a zero-indexed colour (which doesn't specify any actual colour
    in particular) to draw the node in.

    Lines is a list of tuples which represent lines you should draw away
    from the revision, if you also need to draw lines into the revision
    you should use the lines list from the previous iteration.  Each
    typle in the list is in the form (start, end, colour) with start and
    end being zero-indexed column numbers and colour as in node.

    It's up to you how to actually draw the nodes and lines (straight,
    curved, kinked, etc.) and to pick the actual colours for each index.
    """
    
    # We get the mainline so we can pass it to merge_sort to make merge_sort
    # run faster.
    mainline = branch.revision_history()
    graph_parents = branch.repository.get_revision_graph(start)
    graph_children = {}
    for revid in graph_parents.iterkeys():
        graph_children[revid] = []

    merge_sorted_revisions = merge_sort(
        graph_parents,
        start,
        mainline,
        generate_revno=True)
    
    revid_index = {}
    revno_index = {}
    
    # This will hold an item for each "branch". For a revisions, the revsion
    # number less the least significant digit is the branch_id, and used as the
    # key for the dict. Hence revision with the same revsion number less the
    # least significant digit are considered to be in the same branch line.
    # e.g.: for revisions 290.12.1 and 290.12.2, the branch_id would be 290.12,
    # and these two revisions will be in the same branch line. Each value is
    # a list of [rev_indexes, min_index, max_index, col_index].
    branch_lines = {}
    BL_REV_INDEXES = 0
    BL_MIN_INDEX = 1
    BL_MAX_INDEX = 2
    BL_COL_INDEX = 3
    
    linegraph = []    
    
    for (rev_index, (sequence_number,
                     revid,
                     merge_depth,
                     revno_sequence,
                     end_of_merge)) in enumerate(merge_sorted_revisions):
        
        revid_index[revid] = rev_index
        revno_index[revno_sequence] = rev_index
        
        branch_id = revno_sequence[0:-1]
        
        branch_line = None
        if branch_id not in branch_lines:
            branch_line = [[],        # BL_REV_INDEXES
                           rev_index, # BL_MIN_INDEX
                           0,         # BL_MAX_INDEX
                           None]      # BL_COL_INDEX
            branch_lines[branch_id] = branch_line
        else:
            branch_line = branch_lines[branch_id]
        
        branch_line[BL_REV_INDEXES].append(rev_index)
        if rev_index > branch_line[BL_MAX_INDEX]:
            branch_line[BL_MAX_INDEX] = rev_index
        
        parents = graph_parents[revid]
        for parent_revid in parents:
            graph_children[parent_revid].append(revid)
        
        linegraph.append([revid,
                          None,
                          [],
                          parents,
                          None,
                          revno_sequence])

    branch_ids = branch_lines.keys()
    
    def branch_id_cmp(x, y):
        """Compaire branch_id's first by the number of digits, then reversed
        by their value"""
        len_x = len(x)
        len_y = len(y)
        if len_x == len_y:
            return -cmp(x, y)
        return cmp(len_x, len_y)
    
    branch_ids.sort(branch_id_cmp)
    # This will hold a tuple of (child_index, parent_index, col_index) for each
    # line that needs to be drawn. If col_index is not none, then the line is
    # drawn along that column, else the the line can be drawn directly between
    # the child and parent because either the child and parent are in the same
    # branch line, or the child and parent are 1 row apart.
    lines = []
    empty_column = [False for i in range(len(graph_parents))]
    # This will hold a bit map for each cell. If the cell is true, then the
    # cell allready contains a node or line. This use when deciding what column
    # to place a branch line or line in, without it overlaping something else.
    columns = [list(empty_column)]
    
    
    for branch_id in branch_ids:
        branch_line = branch_lines[branch_id]
        
        # Find the col_index for the direct parent branch. This will be the
        # starting point when looking for a free column.
        parent_col_index = 0
        if len(branch_id) > 1:
            parent_branch_id = branch_id[0:-2]
            parent_col_index = branch_lines[parent_branch_id][BL_COL_INDEX]
            parent_revno = branch_id[0:-1]
            if parent_revno in revno_index:
                parent_index = revno_index[parent_revno]
                branch_line[BL_MAX_INDEX] = parent_index - 1
        
        col_search_order = _branch_line_col_search_order(columns,
                                                         parent_col_index)
        branch_line[BL_COL_INDEX] = _append_line(columns,
                                                (branch_line[BL_MIN_INDEX],
                                                 branch_line[BL_MAX_INDEX]),
                                                empty_column,
                                                col_search_order)
        color = reduce(lambda x, y: x+y, branch_id, 0)
        col_index = branch_line[BL_COL_INDEX]
        node = (col_index, color)        
        
        for rev_index in branch_line[BL_REV_INDEXES]:
            (sequence_number,
                 revid,
                 merge_depth,
                 revno_sequence,
                 end_of_merge) = merge_sorted_revisions[rev_index]
            
            linegraph[rev_index][1] = node
            linegraph[rev_index][4] = graph_children[revid]
            
            for parent_revid in graph_parents[revid]:
                if parent_revid in revid_index:
                    parent_index = revid_index[parent_revid]
                    parent_revno = merge_sorted_revisions[parent_index][3]
                    parent_branch_id = parent_revno[0:-1]
                    col_index = None
                    is_direct_parent_line = False
                    if len(branch_id) > 1:
                        if parent_revno == branch_id[0:-1]:
                            is_direct_parent_line = True
                    
                    # A line only needs it's own column if it is going from
                    # one branch line to another, it's not the line to the
                    # direct parent, and if it is longer than one row.
                    if branch_id != parent_branch_id and \
                       parent_index - rev_index > 1 and \
                       not is_direct_parent_line:
                        parent_node = linegraph[parent_index][1]
                        if parent_node:
                            parent_col_index = parent_node[0]
                        else:
                            parent_col_index = None
                        col_search_order = \
                                _line_col_search_order(columns,
                                                       parent_col_index,
                                                       branch_line[BL_COL_INDEX])
                        col_index = _append_line(columns,
                                                 (rev_index+1, parent_index-1),
                                                 empty_column,
                                                 col_search_order)
                    lines.append((rev_index, parent_index, col_index))
    
    for (child_index, parent_index, line_col_index) in lines:
        child_col_index = linegraph[child_index][1][0]
        
        parent_node = linegraph[parent_index][1]
        parent_col_index = parent_node[0]
        color = parent_node[1]
        
        if line_col_index:
            # line from the child's column to the lines column
            linegraph[child_index][2].append(
                (child_col_index,
                 line_col_index,
                 color))
            # lines down the line's column
            for line_part_index in range(child_index+1, parent_index-1):
                linegraph[line_part_index][2].append(
                    (line_col_index,   
                     line_col_index,
                     color))
            # line from the line's column to the parent's column
            linegraph[parent_index-1][2].append(
                (line_col_index,
                 parent_col_index,
                 color))
        else:
            # lines down the child's column
            for line_part_index in range(child_index, parent_index-1):
                linegraph[line_part_index][2].append(
                    (child_col_index,   
                     child_col_index,
                     color))
            # line from the child's column to the parent's column
            linegraph[parent_index-1][2].append(
                (child_col_index,
                 parent_col_index,
                 color))
    
    return (linegraph, revid_index)

def _branch_line_col_search_order(columns, parent_col_index):
    return range(parent_col_index, len(columns)) + \
           range(parent_col_index-1, -1, -1)

def _line_col_search_order(columns, parent_col_index, child_col_index):
    dest_col_indexes = []
    if parent_col_index is not None:
        dest_col_indexes.append(parent_col_index)
    else:
        dest_col_indexes.append(child_col_index)
    dest_col_indexes.append(child_col_index)
    dest_col_indexes.sort()
    col_search_order = range(dest_col_indexes[1], dest_col_indexes[0] -1, -1) 
    i = 1
    while dest_col_indexes[1] + i < len(columns) or \
          dest_col_indexes[0] - i > -1:
        if dest_col_indexes[1] + i < len(columns):
            col_search_order.append(dest_col_indexes[1] + i)
        if dest_col_indexes[0] - i > -1:
            col_search_order.append(dest_col_indexes[0] - i)
        i += 1
    return col_search_order

def _append_line(columns, line, empty_column, col_search_order):
    line_range = range(line[0], line[1]+1)
    
    for col_index in col_search_order:
        column = columns[col_index]
        has_overlaping_line = False
        for row_index in line_range:
            if column[row_index]:
                has_overlaping_line = True
                break
        if not has_overlaping_line:
            break
    else:
        col_index = len(columns)
        column = list(empty_column)
        columns.append(column)
    
    for row_index in line_range:
        column[row_index] = True
    return col_index

def same_branch(a, b):
    """Return whether we think revisions a and b are on the same branch."""
    if len(a.parent_ids) == 1:
        # Defacto same branch if only parent
        return True
    elif a.committer == b.committer:
        # Same committer so may as well be
        return True
    else:
        return False