/b-gtk/fix-viz

To get this branch, use:
bzr branch http://gegoxaren.bato24.eu/bzr/b-gtk/fix-viz
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""Directed graph production.

This module contains the code to produce an ordered directed graph of a
bzr branch, such as we display in the tree view at the top of the bzrk
window.
"""

__copyright__ = "Copyright © 2005 Canonical Ltd."
__author__    = "Scott James Remnant <scott@ubuntu.com>"


from bzrlib.errors import NoSuchRevision


class DummyRevision(object):
    """Dummy bzr revision.

    Sometimes, especially in older bzr branches, a revision is referenced
    as the parent of another but not actually present in the branch's store.
    When this happens we use an instance of this class instead of the real
    Revision object (which we can't get).
    """

    def __init__(self, revid):
        self.revision_id = revid
        self.parent_ids = []
        self.committer = None
        self.message = self.revision_id


class DistanceMethod(object):

    def __init__(self, branch, start):
        self.branch = branch
        self.start = start
        self.revisions = {}
        self.children = {}
        self.children_of_id = {start: set()}
        self.parent_ids_of = {}
        self.colours = { start: 0 }
        self.last_colour = 0
        self.direct_parent_of = {}

    def fill_caches(self):
        branch = self.branch
        revisions = self.revisions
        todo = set([self.start])
        while todo:
            revid = todo.pop()
            try:
                revision = branch.get_revision(revid)
            except NoSuchRevision:
                revision = DummyRevision(revid)
            self.cache_revision(revid, revision)
            for parent_id in revision.parent_ids:
                if parent_id not in revisions:
                    todo.add(parent_id)

    def cache_revision(self, revid, revision):
        "Set the caches for a newly retrieved revision."""
        # Build a revision cache
        self.revisions[revid] = revision
        # Build a children dictionnary
        for parent_id in revision.parent_ids:
            self.children_of_id.setdefault(parent_id, set()).add(revision)
        # Build a parents dictionnary, where redundant parents will be removed,
        # and that will be passed along tothe rest of program.
        if len(revision.parent_ids) == len(set(revision.parent_ids)):
            self.parent_ids_of[revision] = list(revision.parent_ids)
        else:
            # Remove duplicate parents
            parent_ids = []
            parent_ids_set = set()
            for parent_id in revision.parent_ids:
                if parent_id in parent_ids_set:
                    continue
                parent_ids.append(parent_id)
                parent_ids_set.add(parent_id)
            self.parent_ids_of[revision] = parent_ids

    def make_children_map(self):
        revisions = self.revisions
        return dict((revisions[revid], c)
                    for (revid, c) in self.children_of_id.iteritems())

    def first_ancestry_traversal(self):
        distances = {}
        todo = [self.start]
        revisions = self.revisions
        children_of_id = self.children_of_id
        while todo:
            revid = todo.pop(0)
            for child in children_of_id[revid]:
                if child.revision_id not in distances:
                    todo.append(revid)
                    break
            else:
                distances[revid] = len(distances)
                for parent_id in revisions[revid].parent_ids:
                    if parent_id not in todo:
                        todo.insert(0, parent_id)
        # Topologically sorted revids, with the most recent revisions first.
        # A revision occurs only after all of its children.
        self.distances = distances
        return sorted(distances, key=distances.get)

    def remove_redundant_parents(self, sorted_revids):
        children_of_id = self.children_of_id
        revisions = self.revisions
        parent_ids_of = self.parent_ids_of
        
        # Count the number of children of each revision, so we can release
        # memory for ancestry data as soon as it's not going to be needed
        # anymore.
        pending_count_of = {}
        for parent_id, children in children_of_id.iteritems():
            pending_count_of[parent_id] = len(children)

        # Build the ancestry dictionnary by examining older revisions first,
        # and remove revision parents that are ancestors of other parents of
        # the same revision.
        ancestor_ids_of = {}
        for revid in reversed(sorted_revids):
            revision = revisions[revid]
            parent_ids = parent_ids_of[revision]
            # ignore candidate parents which are an ancestor of another parent,
            # but never ignore the leftmost parent
            redundant_ids = []
            ignorable_parent_ids = parent_ids[1:] # never ignore leftmost
            for candidate_id in ignorable_parent_ids: 
                for parent_id in list(parent_ids):
                    if candidate_id in ancestor_ids_of[parent_id]:
                        redundant_ids.append(candidate_id)
                        parent_ids.remove(candidate_id)
                        children_of_candidate = children_of_id[candidate_id]
                        children_of_candidate.remove(revision)
                        break
            # save the set of ancestors of that revision
            ancestor_ids = set(parent_ids)
            for parent_id in parent_ids:
                ancestor_ids.update(ancestor_ids_of[parent_id])
            ancestor_ids_of[revid] = ancestor_ids
            # discard ancestry data for revisions whose children are already
            # done
            for parent_id in parent_ids + redundant_ids:
                pending_count = pending_count_of[parent_id] - 1
                pending_count_of[parent_id] = pending_count
                if pending_count == 0:
                    ancestor_ids_of[parent_id] = None

    def sort_revisions(self, sorted_revids):
        revisions = self.revisions
        parent_ids_of = self.parent_ids_of
        children_of_id = self.children_of_id
        # Try to compact sequences of revisions on the same branch.
        distances = {}
        skipped_revids = []
        expected_id = sorted_revids[0]
        pending_ids = []
        while True:
            revid = sorted_revids.pop(0)
            if revid != expected_id:
                skipped_revids.append(revid)
                continue
            revision = revisions[revid]
            for child in children_of_id[revid]:
                # postpone if any child is missing
                if child.revision_id not in distances:
                    if expected_id not in pending_ids:
                        pending_ids.append(expected_id)
                    expected_id = pending_ids.pop(0)
                    skipped_revids.append(revid)
                    sorted_revids[:0] = skipped_revids
                    del skipped_revids[:]
                    break
            else:
                # all children are here, push!
                distances[revid] = len(distances)
                # all parents will need to be pushed as soon as possible
                for parent in parent_ids_of[revision]:
                    if parent not in pending_ids:
                        pending_ids.insert(0, parent)
                if not pending_ids:
                    break
                expected_id = pending_ids.pop(0)
                # if the next expected revid has already been skipped, requeue
                # the skipped ids, except those that would go right back to the
                # skipped list.
                if expected_id in skipped_revids:
                    pos = skipped_revids.index(expected_id)
                    sorted_revids[:0] = skipped_revids[pos:]
                    del skipped_revids[pos:]
        self.distances = distances
        return sorted(distances, key=distances.get)

    def choose_colour(self, revid):
        revision = self.revisions[revid]
        children_of_id = self.children_of_id
        parent_ids_of = self.parent_ids_of
        colours = self.colours
        # choose colour
        the_children = children_of_id[revid]
        if len(the_children) == 1:
            [child] = the_children
            if len(parent_ids_of[child]) == 1:
                # one-one relationship between parent and child, same
                # colour
                colours[revid] = colours[child.revision_id]
            else:
                self.choose_colour_one_child(revision, child)
        else:
            self.choose_colour_many_children(revision, the_children)

    def choose_colour_one_child(self, revision, child):
        revid = revision.revision_id
        direct_parent_of = self.direct_parent_of
        revisions = self.revisions
        # one child with multiple parents, the first parent with
        # the same committer gets the colour
        direct_parent = direct_parent_of.get(child)
        if direct_parent is None:
            # if it has not been found yet, find it now and remember
            for parent_id in self.parent_ids_of[child]:
                parent_revision = revisions[parent_id]
                if parent_revision.committer == child.committer:
                    # found the first parent with the same committer
                    direct_parent = parent_revision
                    direct_parent_of[child] = direct_parent
                    break
        if direct_parent == revision:
            self.colours[revid] = self.colours[child.revision_id]
        else:
            self.colours[revid] = self.last_colour = self.last_colour + 1

    def choose_colour_many_children(self, revision, the_children):
        distances = self.distances
        revid = revision.revision_id
        direct_parent_of = self.direct_parent_of
        # multiple children, get the colour of the last displayed child
        # with the same committer which does not already have its colour
        # taken
        available = {}
        for child in the_children:
            if child.committer != revision.committer:
                continue
            direct_parent = direct_parent_of.get(child)
            if direct_parent == revision:
                self.colours[revid] = self.colours[child.revision_id]
                break
            if direct_parent is None:
                available[child] = distances[child.revision_id]
        else:
            if available:
                sorted_children = sorted(available, key=available.get)
                child = sorted_children[-1]
                direct_parent_of[child] = revision
                self.colours[revid] = self.colours[child.revision_id]
            else:
                # no candidate children is available, pick the next
                # colour
                self.colours[revid] = self.last_colour = self.last_colour + 1


def distances(branch, start, robust, accurate, maxnum):
    """Sort the revisions.

    Traverses the branch revision tree starting at start and produces an
    ordered list of revisions such that a revision always comes after
    any revision it is the parent of.

    Returns a tuple of (revids, revisions, colours, children)
    """
    distance = DistanceMethod(branch, start)
    distance.fill_caches()
    sorted_revids = distance.first_ancestry_traversal()
    if robust:
        print 'robust filtering'
        distance.remove_redundant_parents(sorted_revids)
    children = distance.make_children_map()
    if accurate:
        print 'accurate sorting'
        sorted_revids = distance.sort_revisions(sorted_revids)
    for revid in sorted_revids:
        distance.choose_colour(revid)

    if maxnum is not None:
        del sorted_revids[maxnum:]

    revisions = distance.revisions
    colours = distance.colours
    parent_ids_of = distance.parent_ids_of
    return (sorted_revids, revisions, colours, children, parent_ids_of)

def graph(revids, revisions, colours, parent_ids):
    """Produce a directed graph of a bzr branch.

    For each revision it then yields a tuple of (revision, node, lines).
    If the revision is only referenced in the branch and not present in the
    store, revision will be a DummyRevision object, otherwise it is the bzr
    Revision object with the meta-data for the revision.

    Node is a tuple of (column, colour) with column being a zero-indexed
    column number of the graph that this revision represents and colour
    being a zero-indexed colour (which doesn't specify any actual colour
    in particular) to draw the node in.

    Lines is a list of tuples which represent lines you should draw away
    from the revision, if you also need to draw lines into the revision
    you should use the lines list from the previous iteration.  Each
    typle in the list is in the form (start, end, colour) with start and
    end being zero-indexed column numbers and colour as in node.

    It's up to you how to actually draw the nodes and lines (straight,
    curved, kinked, etc.) and to pick the actual colours for each index.
    """
    hanging = revids[:1]
    for revid in revids:
        lines = []
        node = None

        new_hanging = []
        for h_idx, hang in enumerate(hanging):
            if hang == revid:
                # We've matched a hanging revision, so need to output a node
                # at this point
                node = (h_idx, colours[revid])

                # Now we need to hang its parents, we put them at the point
                # the old column was so anything to the right of this has
                # to move outwards to make room.  We also try and collapse
                # hangs to keep the graph small.
                for parent_id in parent_ids[revisions[revid]]:
                    try:
                        n_idx = new_hanging.index(parent_id)
                    except ValueError:
                        n_idx = len(new_hanging)
                        new_hanging.append(parent_id)
                    lines.append((h_idx, n_idx, colours[parent_id]))
            else:
                # Revision keeps on hanging, adjust for any change in the
                # graph shape and try to collapse hangs to keep the graph
                # small.
                try:
                    n_idx = new_hanging.index(hang)
                except ValueError:
                    n_idx = len(new_hanging)
                    new_hanging.append(hang)
                lines.append((h_idx, n_idx, colours[hang]))
        hanging = new_hanging

        yield (revisions[revid], node, lines)


def same_branch(a, b):
    """Return whether we think revisions a and b are on the same branch."""
    if len(a.parent_ids) == 1:
        # Defacto same branch if only parent
        return True
    elif a.committer == b.committer:
        # Same committer so may as well be
        return True
    else:
        return False