1
# Copyright (C) 2008-2011 Canonical Ltd
3
# This program is free software; you can redistribute it and/or modify
4
# it under the terms of the GNU General Public License as published by
5
# the Free Software Foundation; either version 2 of the License, or
6
# (at your option) any later version.
8
# This program is distributed in the hope that it will be useful,
9
# but WITHOUT ANY WARRANTY; without even the implied warranty of
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11
# GNU General Public License for more details.
13
# You should have received a copy of the GNU General Public License
14
# along with this program; if not, write to the Free Software
15
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
17
"""Persistent maps from tuple_of_strings->string using CHK stores.
19
Overview and current status:
21
The CHKMap class implements a dict from tuple_of_strings->string by using a trie
22
with internal nodes of 8-bit fan out; The key tuples are mapped to strings by
23
joining them by \x00, and \x00 padding shorter keys out to the length of the
24
longest key. Leaf nodes are packed as densely as possible, and internal nodes
25
are all an additional 8-bits wide leading to a sparse upper tree.
27
Updates to a CHKMap are done preferentially via the apply_delta method, to
28
allow optimisation of the update operation; but individual map/unmap calls are
29
possible and supported. Individual changes via map/unmap are buffered in memory
30
until the _save method is called to force serialisation of the tree.
31
apply_delta records its changes immediately by performing an implicit _save.
36
Densely packed upper nodes.
40
from __future__ import absolute_import
53
from ..sixish import (
57
from ..sixish import PY3
58
from ..static_tuple import StaticTuple
61
# If each line is 50 bytes, and you have 255 internal pages, with 255-way fan
62
# out, it takes 3.1MB to cache the layer.
63
_PAGE_CACHE_SIZE = 4 * 1024 * 1024
64
# Per thread caches for 2 reasons:
65
# - in the server we may be serving very different content, so we get less
67
# - we avoid locking on every cache lookup.
68
_thread_caches = threading.local()
70
_thread_caches.page_cache = None
74
"""Get the per-thread page cache.
76
We need a function to do this because in a new thread the _thread_caches
77
threading.local object does not have the cache initialized yet.
79
page_cache = getattr(_thread_caches, 'page_cache', None)
80
if page_cache is None:
81
# We are caching bytes so len(value) is perfectly accurate
82
page_cache = lru_cache.LRUSizeCache(_PAGE_CACHE_SIZE)
83
_thread_caches.page_cache = page_cache
91
# If a ChildNode falls below this many bytes, we check for a remap
92
_INTERESTING_NEW_SIZE = 50
93
# If a ChildNode shrinks by more than this amount, we check for a remap
94
_INTERESTING_SHRINKAGE_LIMIT = 20
97
def _search_key_plain(key):
98
"""Map the key tuple into a search string that just uses the key bytes."""
99
return b'\x00'.join(key)
102
search_key_registry = registry.Registry()
103
search_key_registry.register(b'plain', _search_key_plain)
106
class CHKMap(object):
107
"""A persistent map from string to string backed by a CHK store."""
109
__slots__ = ('_store', '_root_node', '_search_key_func')
111
def __init__(self, store, root_key, search_key_func=None):
112
"""Create a CHKMap object.
114
:param store: The store the CHKMap is stored in.
115
:param root_key: The root key of the map. None to create an empty
117
:param search_key_func: A function mapping a key => bytes. These bytes
118
are then used by the internal nodes to split up leaf nodes into
122
if search_key_func is None:
123
search_key_func = _search_key_plain
124
self._search_key_func = search_key_func
126
self._root_node = LeafNode(search_key_func=search_key_func)
128
self._root_node = self._node_key(root_key)
130
def apply_delta(self, delta):
131
"""Apply a delta to the map.
133
:param delta: An iterable of old_key, new_key, new_value tuples.
134
If new_key is not None, then new_key->new_value is inserted
135
into the map; if old_key is not None, then the old mapping
136
of old_key is removed.
139
# Check preconditions first.
140
as_st = StaticTuple.from_sequence
141
new_items = {as_st(key) for (old, key, value) in delta
142
if key is not None and old is None}
143
existing_new = list(self.iteritems(key_filter=new_items))
145
raise errors.InconsistentDeltaDelta(delta,
146
"New items are already in the map %r." % existing_new)
148
for old, new, value in delta:
149
if old is not None and old != new:
150
self.unmap(old, check_remap=False)
152
for old, new, value in delta:
159
def _ensure_root(self):
160
"""Ensure that the root node is an object not a key."""
161
if isinstance(self._root_node, StaticTuple):
162
# Demand-load the root
163
self._root_node = self._get_node(self._root_node)
165
def _get_node(self, node):
168
Note that this does not update the _items dict in objects containing a
169
reference to this node. As such it does not prevent subsequent IO being
172
:param node: A tuple key or node object.
173
:return: A node object.
175
if isinstance(node, StaticTuple):
176
bytes = self._read_bytes(node)
177
return _deserialise(bytes, node,
178
search_key_func=self._search_key_func)
182
def _read_bytes(self, key):
184
return _get_cache()[key]
186
stream = self._store.get_record_stream([key], 'unordered', True)
187
bytes = next(stream).get_bytes_as('fulltext')
188
_get_cache()[key] = bytes
191
def _dump_tree(self, include_keys=False, encoding='utf-8'):
192
"""Return the tree in a string representation."""
195
def decode(x): return x.decode(encoding)
197
def decode(x): return x
198
res = self._dump_tree_node(self._root_node, prefix=b'', indent='',
199
decode=decode, include_keys=include_keys)
200
res.append('') # Give a trailing '\n'
201
return '\n'.join(res)
203
def _dump_tree_node(self, node, prefix, indent, decode, include_keys=True):
204
"""For this node and all children, generate a string representation."""
209
node_key = node.key()
210
if node_key is not None:
211
key_str = ' %s' % (decode(node_key[0]),)
214
result.append('%s%r %s%s' % (indent, decode(prefix), node.__class__.__name__,
216
if isinstance(node, InternalNode):
217
# Trigger all child nodes to get loaded
218
list(node._iter_nodes(self._store))
219
for prefix, sub in sorted(viewitems(node._items)):
220
result.extend(self._dump_tree_node(sub, prefix, indent + ' ',
221
decode=decode, include_keys=include_keys))
223
for key, value in sorted(viewitems(node._items)):
224
# Don't use prefix nor indent here to line up when used in
225
# tests in conjunction with assertEqualDiff
226
result.append(' %r %r' % (
227
tuple([decode(ke) for ke in key]), decode(value)))
231
def from_dict(klass, store, initial_value, maximum_size=0, key_width=1,
232
search_key_func=None):
233
"""Create a CHKMap in store with initial_value as the content.
235
:param store: The store to record initial_value in, a VersionedFiles
236
object with 1-tuple keys supporting CHK key generation.
237
:param initial_value: A dict to store in store. Its keys and values
239
:param maximum_size: The maximum_size rule to apply to nodes. This
240
determines the size at which no new data is added to a single node.
241
:param key_width: The number of elements in each key_tuple being stored
243
:param search_key_func: A function mapping a key => bytes. These bytes
244
are then used by the internal nodes to split up leaf nodes into
246
:return: The root chk of the resulting CHKMap.
248
root_key = klass._create_directly(store, initial_value,
249
maximum_size=maximum_size, key_width=key_width,
250
search_key_func=search_key_func)
251
if not isinstance(root_key, StaticTuple):
252
raise AssertionError('we got a %s instead of a StaticTuple'
257
def _create_via_map(klass, store, initial_value, maximum_size=0,
258
key_width=1, search_key_func=None):
259
result = klass(store, None, search_key_func=search_key_func)
260
result._root_node.set_maximum_size(maximum_size)
261
result._root_node._key_width = key_width
263
for key, value in viewitems(initial_value):
264
delta.append((None, key, value))
265
root_key = result.apply_delta(delta)
269
def _create_directly(klass, store, initial_value, maximum_size=0,
270
key_width=1, search_key_func=None):
271
node = LeafNode(search_key_func=search_key_func)
272
node.set_maximum_size(maximum_size)
273
node._key_width = key_width
274
as_st = StaticTuple.from_sequence
275
node._items = dict((as_st(key), val)
276
for key, val in viewitems(initial_value))
277
node._raw_size = sum(node._key_value_len(key, value)
278
for key, value in viewitems(node._items))
279
node._len = len(node._items)
280
node._compute_search_prefix()
281
node._compute_serialised_prefix()
282
if (node._len > 1 and
284
node._current_size() > maximum_size):
285
prefix, node_details = node._split(store)
286
if len(node_details) == 1:
287
raise AssertionError('Failed to split using node._split')
288
node = InternalNode(prefix, search_key_func=search_key_func)
289
node.set_maximum_size(maximum_size)
290
node._key_width = key_width
291
for split, subnode in node_details:
292
node.add_node(split, subnode)
293
keys = list(node.serialise(store))
296
def iter_changes(self, basis):
297
"""Iterate over the changes between basis and self.
299
:return: An iterator of tuples: (key, old_value, new_value). Old_value
300
is None for keys only in self; new_value is None for keys only in
304
# Read both trees in lexographic, highest-first order.
305
# Any identical nodes we skip
306
# Any unique prefixes we output immediately.
307
# values in a leaf node are treated as single-value nodes in the tree
308
# which allows them to be not-special-cased. We know to output them
309
# because their value is a string, not a key(tuple) or node.
311
# corner cases to beware of when considering this function:
312
# *) common references are at different heights.
313
# consider two trees:
314
# {'a': LeafNode={'aaa':'foo', 'aab':'bar'}, 'b': LeafNode={'b'}}
315
# {'a': InternalNode={'aa':LeafNode={'aaa':'foo', 'aab':'bar'},
316
# 'ab':LeafNode={'ab':'bar'}}
317
# 'b': LeafNode={'b'}}
318
# the node with aaa/aab will only be encountered in the second tree
319
# after reading the 'a' subtree, but it is encountered in the first
320
# tree immediately. Variations on this may have read internal nodes
321
# like this. we want to cut the entire pending subtree when we
322
# realise we have a common node. For this we use a list of keys -
323
# the path to a node - and check the entire path is clean as we
325
if self._node_key(self._root_node) == self._node_key(basis._root_node):
329
excluded_keys = set()
330
self_node = self._root_node
331
basis_node = basis._root_node
332
# A heap, each element is prefix, node(tuple/NodeObject/string),
333
# key_path (a list of tuples, tail-sharing down the tree.)
337
def process_node(node, path, a_map, pending):
338
# take a node and expand it
339
node = a_map._get_node(node)
340
if isinstance(node, LeafNode):
341
path = (node._key, path)
342
for key, value in viewitems(node._items):
343
# For a LeafNode, the key is a serialized_key, rather than
344
# a search_key, but the heap is using search_keys
345
search_key = node._search_key_func(key)
346
heapq.heappush(pending, (search_key, key, value, path))
348
# type(node) == InternalNode
349
path = (node._key, path)
350
for prefix, child in viewitems(node._items):
351
heapq.heappush(pending, (prefix, None, child, path))
353
def process_common_internal_nodes(self_node, basis_node):
354
self_items = set(viewitems(self_node._items))
355
basis_items = set(viewitems(basis_node._items))
356
path = (self_node._key, None)
357
for prefix, child in self_items - basis_items:
358
heapq.heappush(self_pending, (prefix, None, child, path))
359
path = (basis_node._key, None)
360
for prefix, child in basis_items - self_items:
361
heapq.heappush(basis_pending, (prefix, None, child, path))
363
def process_common_leaf_nodes(self_node, basis_node):
364
self_items = set(viewitems(self_node._items))
365
basis_items = set(viewitems(basis_node._items))
366
path = (self_node._key, None)
367
for key, value in self_items - basis_items:
368
prefix = self._search_key_func(key)
369
heapq.heappush(self_pending, (prefix, key, value, path))
370
path = (basis_node._key, None)
371
for key, value in basis_items - self_items:
372
prefix = basis._search_key_func(key)
373
heapq.heappush(basis_pending, (prefix, key, value, path))
375
def process_common_prefix_nodes(self_node, self_path,
376
basis_node, basis_path):
377
# Would it be more efficient if we could request both at the same
379
self_node = self._get_node(self_node)
380
basis_node = basis._get_node(basis_node)
381
if (isinstance(self_node, InternalNode) and
382
isinstance(basis_node, InternalNode)):
383
# Matching internal nodes
384
process_common_internal_nodes(self_node, basis_node)
385
elif (isinstance(self_node, LeafNode) and
386
isinstance(basis_node, LeafNode)):
387
process_common_leaf_nodes(self_node, basis_node)
389
process_node(self_node, self_path, self, self_pending)
390
process_node(basis_node, basis_path, basis, basis_pending)
391
process_common_prefix_nodes(self_node, None, basis_node, None)
394
excluded_keys = set()
396
def check_excluded(key_path):
397
# Note that this is N^2, it depends on us trimming trees
398
# aggressively to not become slow.
399
# A better implementation would probably have a reverse map
400
# back to the children of a node, and jump straight to it when
401
# a common node is detected, the proceed to remove the already
402
# pending children. breezy.graph has a searcher module with a
404
while key_path is not None:
405
key, key_path = key_path
406
if key in excluded_keys:
411
while self_pending or basis_pending:
414
# self is exhausted: output remainder of basis
415
for prefix, key, node, path in basis_pending:
416
if check_excluded(path):
418
node = basis._get_node(node)
421
yield (key, node, None)
423
# subtree - fastpath the entire thing.
424
for key, value in node.iteritems(basis._store):
425
yield (key, value, None)
427
elif not basis_pending:
428
# basis is exhausted: output remainder of self.
429
for prefix, key, node, path in self_pending:
430
if check_excluded(path):
432
node = self._get_node(node)
435
yield (key, None, node)
437
# subtree - fastpath the entire thing.
438
for key, value in node.iteritems(self._store):
439
yield (key, None, value)
442
# XXX: future optimisation - yield the smaller items
443
# immediately rather than pushing everything on/off the
444
# heaps. Applies to both internal nodes and leafnodes.
445
if self_pending[0][0] < basis_pending[0][0]:
447
prefix, key, node, path = heapq.heappop(self_pending)
448
if check_excluded(path):
452
yield (key, None, node)
454
process_node(node, path, self, self_pending)
456
elif self_pending[0][0] > basis_pending[0][0]:
458
prefix, key, node, path = heapq.heappop(basis_pending)
459
if check_excluded(path):
463
yield (key, node, None)
465
process_node(node, path, basis, basis_pending)
468
# common prefix: possibly expand both
469
if self_pending[0][1] is None:
474
if basis_pending[0][1] is None:
479
if not read_self and not read_basis:
480
# compare a common value
481
self_details = heapq.heappop(self_pending)
482
basis_details = heapq.heappop(basis_pending)
483
if self_details[2] != basis_details[2]:
484
yield (self_details[1],
485
basis_details[2], self_details[2])
487
# At least one side wasn't a simple value
488
if (self._node_key(self_pending[0][2])
489
== self._node_key(basis_pending[0][2])):
490
# Identical pointers, skip (and don't bother adding to
491
# excluded, it won't turn up again.
492
heapq.heappop(self_pending)
493
heapq.heappop(basis_pending)
495
# Now we need to expand this node before we can continue
496
if read_self and read_basis:
497
# Both sides start with the same prefix, so process
499
self_prefix, _, self_node, self_path = heapq.heappop(
501
basis_prefix, _, basis_node, basis_path = heapq.heappop(
503
if self_prefix != basis_prefix:
504
raise AssertionError(
505
'%r != %r' % (self_prefix, basis_prefix))
506
process_common_prefix_nodes(
507
self_node, self_path,
508
basis_node, basis_path)
511
prefix, key, node, path = heapq.heappop(self_pending)
512
if check_excluded(path):
514
process_node(node, path, self, self_pending)
516
prefix, key, node, path = heapq.heappop(basis_pending)
517
if check_excluded(path):
519
process_node(node, path, basis, basis_pending)
522
def iteritems(self, key_filter=None):
523
"""Iterate over the entire CHKMap's contents."""
525
if key_filter is not None:
526
as_st = StaticTuple.from_sequence
527
key_filter = [as_st(key) for key in key_filter]
528
return self._root_node.iteritems(self._store, key_filter=key_filter)
531
"""Return the key for this map."""
532
if isinstance(self._root_node, StaticTuple):
533
return self._root_node
535
return self._root_node._key
539
return len(self._root_node)
541
def map(self, key, value):
542
"""Map a key tuple to value.
544
:param key: A key to map.
545
:param value: The value to assign to key.
547
key = StaticTuple.from_sequence(key)
548
# Need a root object.
550
prefix, node_details = self._root_node.map(self._store, key, value)
551
if len(node_details) == 1:
552
self._root_node = node_details[0][1]
554
self._root_node = InternalNode(prefix,
555
search_key_func=self._search_key_func)
556
self._root_node.set_maximum_size(node_details[0][1].maximum_size)
557
self._root_node._key_width = node_details[0][1]._key_width
558
for split, node in node_details:
559
self._root_node.add_node(split, node)
561
def _node_key(self, node):
562
"""Get the key for a node whether it's a tuple or node."""
563
if isinstance(node, tuple):
564
node = StaticTuple.from_sequence(node)
565
if isinstance(node, StaticTuple):
570
def unmap(self, key, check_remap=True):
571
"""remove key from the map."""
572
key = StaticTuple.from_sequence(key)
574
if isinstance(self._root_node, InternalNode):
575
unmapped = self._root_node.unmap(self._store, key,
576
check_remap=check_remap)
578
unmapped = self._root_node.unmap(self._store, key)
579
self._root_node = unmapped
581
def _check_remap(self):
582
"""Check if nodes can be collapsed."""
584
if isinstance(self._root_node, InternalNode):
585
self._root_node = self._root_node._check_remap(self._store)
588
"""Save the map completely.
590
:return: The key of the root node.
592
if isinstance(self._root_node, StaticTuple):
594
return self._root_node
595
keys = list(self._root_node.serialise(self._store))
600
"""Base class defining the protocol for CHK Map nodes.
602
:ivar _raw_size: The total size of the serialized key:value data, before
603
adding the header bytes, and without prefix compression.
606
__slots__ = ('_key', '_len', '_maximum_size', '_key_width',
607
'_raw_size', '_items', '_search_prefix', '_search_key_func'
610
def __init__(self, key_width=1):
613
:param key_width: The width of keys for this node.
616
# Current number of elements
618
self._maximum_size = 0
619
self._key_width = key_width
620
# current size in bytes
622
# The pointers/values this node has - meaning defined by child classes.
624
# The common search prefix
625
self._search_prefix = None
628
items_str = str(sorted(self._items))
629
if len(items_str) > 20:
630
items_str = items_str[:16] + '...]'
631
return '%s(key:%s len:%s size:%s max:%s prefix:%s items:%s)' % (
632
self.__class__.__name__, self._key, self._len, self._raw_size,
633
self._maximum_size, self._search_prefix, items_str)
642
def maximum_size(self):
643
"""What is the upper limit for adding references to a node."""
644
return self._maximum_size
646
def set_maximum_size(self, new_size):
647
"""Set the size threshold for nodes.
649
:param new_size: The size at which no data is added to a node. 0 for
652
self._maximum_size = new_size
655
def common_prefix(cls, prefix, key):
656
"""Given 2 strings, return the longest prefix common to both.
658
:param prefix: This has been the common prefix for other keys, so it is
659
more likely to be the common prefix in this case as well.
660
:param key: Another string to compare to
662
if key.startswith(prefix):
665
# Is there a better way to do this?
666
for pos, (left, right) in enumerate(zip(prefix, key)):
670
common = prefix[:pos + 1]
674
def common_prefix_for_keys(cls, keys):
675
"""Given a list of keys, find their common prefix.
677
:param keys: An iterable of strings.
678
:return: The longest common prefix of all keys.
682
if common_prefix is None:
685
common_prefix = cls.common_prefix(common_prefix, key)
686
if not common_prefix:
687
# if common_prefix is the empty string, then we know it won't
693
# Singleton indicating we have not computed _search_prefix yet
697
class LeafNode(Node):
698
"""A node containing actual key:value pairs.
700
:ivar _items: A dict of key->value items. The key is in tuple form.
701
:ivar _size: The number of bytes that would be used by serializing all of
705
__slots__ = ('_common_serialised_prefix',)
707
def __init__(self, search_key_func=None):
709
# All of the keys in this leaf node share this common prefix
710
self._common_serialised_prefix = None
711
if search_key_func is None:
712
self._search_key_func = _search_key_plain
714
self._search_key_func = search_key_func
717
items_str = str(sorted(self._items))
718
if len(items_str) > 20:
719
items_str = items_str[:16] + '...]'
721
'%s(key:%s len:%s size:%s max:%s prefix:%s keywidth:%s items:%s)' \
722
% (self.__class__.__name__, self._key, self._len, self._raw_size,
723
self._maximum_size, self._search_prefix, self._key_width, items_str)
725
def _current_size(self):
726
"""Answer the current serialised size of this node.
728
This differs from self._raw_size in that it includes the bytes used for
731
if self._common_serialised_prefix is None:
735
# We will store a single string with the common prefix
736
# And then that common prefix will not be stored in any of the
738
prefix_len = len(self._common_serialised_prefix)
739
bytes_for_items = (self._raw_size - (prefix_len * self._len))
740
return (9 + # 'chkleaf:\n' +
741
len(str(self._maximum_size)) + 1 +
742
len(str(self._key_width)) + 1 +
743
len(str(self._len)) + 1 +
748
def deserialise(klass, bytes, key, search_key_func=None):
749
"""Deserialise bytes, with key key, into a LeafNode.
751
:param bytes: The bytes of the node.
752
:param key: The key that the serialised node has.
754
key = static_tuple.expect_static_tuple(key)
755
return _deserialise_leaf_node(bytes, key,
756
search_key_func=search_key_func)
758
def iteritems(self, store, key_filter=None):
759
"""Iterate over items in the node.
761
:param key_filter: A filter to apply to the node. It should be a
762
list/set/dict or similar repeatedly iterable container.
764
if key_filter is not None:
765
# Adjust the filter - short elements go to a prefix filter. All
766
# other items are looked up directly.
767
# XXX: perhaps defaultdict? Profiling<rinse and repeat>
769
for key in key_filter:
770
if len(key) == self._key_width:
771
# This filter is meant to match exactly one key, yield it
774
yield key, self._items[key]
776
# This key is not present in this map, continue
779
# Short items, we need to match based on a prefix
780
filters.setdefault(len(key), set()).add(key)
782
filters_itemview = viewitems(filters)
783
for item in viewitems(self._items):
784
for length, length_filter in filters_itemview:
785
if item[0][:length] in length_filter:
789
for item in viewitems(self._items):
792
def _key_value_len(self, key, value):
793
# TODO: Should probably be done without actually joining the key, but
794
# then that can be done via the C extension
795
return (len(self._serialise_key(key)) + 1 +
796
len(b'%d' % value.count(b'\n')) + 1 +
799
def _search_key(self, key):
800
return self._search_key_func(key)
802
def _map_no_split(self, key, value):
803
"""Map a key to a value.
805
This assumes either the key does not already exist, or you have already
806
removed its size and length from self.
808
:return: True if adding this node should cause us to split.
810
self._items[key] = value
811
self._raw_size += self._key_value_len(key, value)
813
serialised_key = self._serialise_key(key)
814
if self._common_serialised_prefix is None:
815
self._common_serialised_prefix = serialised_key
817
self._common_serialised_prefix = self.common_prefix(
818
self._common_serialised_prefix, serialised_key)
819
search_key = self._search_key(key)
820
if self._search_prefix is _unknown:
821
self._compute_search_prefix()
822
if self._search_prefix is None:
823
self._search_prefix = search_key
825
self._search_prefix = self.common_prefix(
826
self._search_prefix, search_key)
827
if (self._len > 1 and
828
self._maximum_size and
829
self._current_size() > self._maximum_size):
830
# Check to see if all of the search_keys for this node are
831
# identical. We allow the node to grow under that circumstance
832
# (we could track this as common state, but it is infrequent)
833
if (search_key != self._search_prefix or
834
not self._are_search_keys_identical()):
838
def _split(self, store):
839
"""We have overflowed.
841
Split this node into multiple LeafNodes, return it up the stack so that
842
the next layer creates a new InternalNode and references the new nodes.
844
:return: (common_serialised_prefix, [(node_serialised_prefix, node)])
846
if self._search_prefix is _unknown:
847
raise AssertionError('Search prefix must be known')
848
common_prefix = self._search_prefix
849
split_at = len(common_prefix) + 1
851
for key, value in viewitems(self._items):
852
search_key = self._search_key(key)
853
prefix = search_key[:split_at]
854
# TODO: Generally only 1 key can be exactly the right length,
855
# which means we can only have 1 key in the node pointed
856
# at by the 'prefix\0' key. We might want to consider
857
# folding it into the containing InternalNode rather than
858
# having a fixed length-1 node.
859
# Note this is probably not true for hash keys, as they
860
# may get a '\00' node anywhere, but won't have keys of
862
if len(prefix) < split_at:
863
prefix += b'\x00' * (split_at - len(prefix))
864
if prefix not in result:
865
node = LeafNode(search_key_func=self._search_key_func)
866
node.set_maximum_size(self._maximum_size)
867
node._key_width = self._key_width
868
result[prefix] = node
870
node = result[prefix]
871
sub_prefix, node_details = node.map(store, key, value)
872
if len(node_details) > 1:
873
if prefix != sub_prefix:
874
# This node has been split and is now found via a different
877
new_node = InternalNode(sub_prefix,
878
search_key_func=self._search_key_func)
879
new_node.set_maximum_size(self._maximum_size)
880
new_node._key_width = self._key_width
881
for split, node in node_details:
882
new_node.add_node(split, node)
883
result[prefix] = new_node
884
return common_prefix, list(viewitems(result))
886
def map(self, store, key, value):
887
"""Map key to value."""
888
if key in self._items:
889
self._raw_size -= self._key_value_len(key, self._items[key])
892
if self._map_no_split(key, value):
893
return self._split(store)
895
if self._search_prefix is _unknown:
896
raise AssertionError('%r must be known' % self._search_prefix)
897
return self._search_prefix, [(b"", self)]
899
_serialise_key = b'\x00'.join
901
def serialise(self, store):
902
"""Serialise the LeafNode to store.
904
:param store: A VersionedFiles honouring the CHK extensions.
905
:return: An iterable of the keys inserted by this operation.
907
lines = [b"chkleaf:\n"]
908
lines.append(b"%d\n" % self._maximum_size)
909
lines.append(b"%d\n" % self._key_width)
910
lines.append(b"%d\n" % self._len)
911
if self._common_serialised_prefix is None:
913
if len(self._items) != 0:
914
raise AssertionError('If _common_serialised_prefix is None'
915
' we should have no items')
917
lines.append(b'%s\n' % (self._common_serialised_prefix,))
918
prefix_len = len(self._common_serialised_prefix)
919
for key, value in sorted(viewitems(self._items)):
920
# Always add a final newline
921
value_lines = osutils.chunks_to_lines([value + b'\n'])
922
serialized = b"%s\x00%d\n" % (self._serialise_key(key),
924
if not serialized.startswith(self._common_serialised_prefix):
925
raise AssertionError('We thought the common prefix was %r'
926
' but entry %r does not have it in common'
927
% (self._common_serialised_prefix, serialized))
928
lines.append(serialized[prefix_len:])
929
lines.extend(value_lines)
930
sha1, _, _ = store.add_lines((None,), (), lines)
931
self._key = StaticTuple(b"sha1:" + sha1,).intern()
932
data = b''.join(lines)
933
if len(data) != self._current_size():
934
raise AssertionError('Invalid _current_size')
935
_get_cache()[self._key] = data
939
"""Return the references to other CHK's held by this node."""
942
def _compute_search_prefix(self):
943
"""Determine the common search prefix for all keys in this node.
945
:return: A bytestring of the longest search key prefix that is
946
unique within this node.
948
search_keys = [self._search_key_func(key) for key in self._items]
949
self._search_prefix = self.common_prefix_for_keys(search_keys)
950
return self._search_prefix
952
def _are_search_keys_identical(self):
953
"""Check to see if the search keys for all entries are the same.
955
When using a hash as the search_key it is possible for non-identical
956
keys to collide. If that happens enough, we may try overflow a
957
LeafNode, but as all are collisions, we must not split.
959
common_search_key = None
960
for key in self._items:
961
search_key = self._search_key(key)
962
if common_search_key is None:
963
common_search_key = search_key
964
elif search_key != common_search_key:
968
def _compute_serialised_prefix(self):
969
"""Determine the common prefix for serialised keys in this node.
971
:return: A bytestring of the longest serialised key prefix that is
972
unique within this node.
974
serialised_keys = [self._serialise_key(key) for key in self._items]
975
self._common_serialised_prefix = self.common_prefix_for_keys(
977
return self._common_serialised_prefix
979
def unmap(self, store, key):
980
"""Unmap key from the node."""
982
self._raw_size -= self._key_value_len(key, self._items[key])
984
trace.mutter("key %s not found in %r", key, self._items)
989
# Recompute from scratch
990
self._compute_search_prefix()
991
self._compute_serialised_prefix()
995
class InternalNode(Node):
996
"""A node that contains references to other nodes.
998
An InternalNode is responsible for mapping search key prefixes to child
1001
:ivar _items: serialised_key => node dictionary. node may be a tuple,
1002
LeafNode or InternalNode.
1005
__slots__ = ('_node_width',)
1007
def __init__(self, prefix=b'', search_key_func=None):
1009
# The size of an internalnode with default values and no children.
1010
# How many octets key prefixes within this node are.
1011
self._node_width = 0
1012
self._search_prefix = prefix
1013
if search_key_func is None:
1014
self._search_key_func = _search_key_plain
1016
self._search_key_func = search_key_func
1018
def add_node(self, prefix, node):
1019
"""Add a child node with prefix prefix, and node node.
1021
:param prefix: The search key prefix for node.
1022
:param node: The node being added.
1024
if self._search_prefix is None:
1025
raise AssertionError("_search_prefix should not be None")
1026
if not prefix.startswith(self._search_prefix):
1027
raise AssertionError("prefixes mismatch: %s must start with %s"
1028
% (prefix, self._search_prefix))
1029
if len(prefix) != len(self._search_prefix) + 1:
1030
raise AssertionError("prefix wrong length: len(%s) is not %d" %
1031
(prefix, len(self._search_prefix) + 1))
1032
self._len += len(node)
1033
if not len(self._items):
1034
self._node_width = len(prefix)
1035
if self._node_width != len(self._search_prefix) + 1:
1036
raise AssertionError("node width mismatch: %d is not %d" %
1037
(self._node_width, len(self._search_prefix) + 1))
1038
self._items[prefix] = node
1041
def _current_size(self):
1042
"""Answer the current serialised size of this node."""
1043
return (self._raw_size + len(str(self._len)) + len(str(self._key_width))
1044
+ len(str(self._maximum_size)))
1047
def deserialise(klass, bytes, key, search_key_func=None):
1048
"""Deserialise bytes to an InternalNode, with key key.
1050
:param bytes: The bytes of the node.
1051
:param key: The key that the serialised node has.
1052
:return: An InternalNode instance.
1054
key = static_tuple.expect_static_tuple(key)
1055
return _deserialise_internal_node(bytes, key,
1056
search_key_func=search_key_func)
1058
def iteritems(self, store, key_filter=None):
1059
for node, node_filter in self._iter_nodes(store, key_filter=key_filter):
1060
for item in node.iteritems(store, key_filter=node_filter):
1063
def _iter_nodes(self, store, key_filter=None, batch_size=None):
1064
"""Iterate over node objects which match key_filter.
1066
:param store: A store to use for accessing content.
1067
:param key_filter: A key filter to filter nodes. Only nodes that might
1068
contain a key in key_filter will be returned.
1069
:param batch_size: If not None, then we will return the nodes that had
1070
to be read using get_record_stream in batches, rather than reading
1072
:return: An iterable of nodes. This function does not have to be fully
1073
consumed. (There will be no pending I/O when items are being returned.)
1075
# Map from chk key ('sha1:...',) to (prefix, key_filter)
1076
# prefix is the key in self._items to use, key_filter is the key_filter
1077
# entries that would match this node
1080
if key_filter is None:
1081
# yielding all nodes, yield whatever we have, and queue up a read
1082
# for whatever we are missing
1084
for prefix, node in viewitems(self._items):
1085
if node.__class__ is StaticTuple:
1086
keys[node] = (prefix, None)
1089
elif len(key_filter) == 1:
1090
# Technically, this path could also be handled by the first check
1091
# in 'self._node_width' in length_filters. However, we can handle
1092
# this case without spending any time building up the
1093
# prefix_to_keys, etc state.
1095
# This is a bit ugly, but TIMEIT showed it to be by far the fastest
1096
# 0.626us list(key_filter)[0]
1097
# is a func() for list(), 2 mallocs, and a getitem
1098
# 0.489us [k for k in key_filter][0]
1099
# still has the mallocs, avoids the func() call
1100
# 0.350us iter(key_filter).next()
1101
# has a func() call, and mallocs an iterator
1102
# 0.125us for key in key_filter: pass
1103
# no func() overhead, might malloc an iterator
1104
# 0.105us for key in key_filter: break
1105
# no func() overhead, might malloc an iterator, probably
1106
# avoids checking an 'else' clause as part of the for
1107
for key in key_filter:
1109
search_prefix = self._search_prefix_filter(key)
1110
if len(search_prefix) == self._node_width:
1111
# This item will match exactly, so just do a dict lookup, and
1112
# see what we can return
1115
node = self._items[search_prefix]
1117
# A given key can only match 1 child node, if it isn't
1118
# there, then we can just return nothing
1120
if node.__class__ is StaticTuple:
1121
keys[node] = (search_prefix, [key])
1123
# This is loaded, and the only thing that can match,
1128
# First, convert all keys into a list of search prefixes
1129
# Aggregate common prefixes, and track the keys they come from
1132
for key in key_filter:
1133
search_prefix = self._search_prefix_filter(key)
1134
length_filter = length_filters.setdefault(
1135
len(search_prefix), set())
1136
length_filter.add(search_prefix)
1137
prefix_to_keys.setdefault(search_prefix, []).append(key)
1139
if (self._node_width in length_filters and
1140
len(length_filters) == 1):
1141
# all of the search prefixes match exactly _node_width. This
1142
# means that everything is an exact match, and we can do a
1143
# lookup into self._items, rather than iterating over the items
1145
search_prefixes = length_filters[self._node_width]
1146
for search_prefix in search_prefixes:
1148
node = self._items[search_prefix]
1150
# We can ignore this one
1152
node_key_filter = prefix_to_keys[search_prefix]
1153
if node.__class__ is StaticTuple:
1154
keys[node] = (search_prefix, node_key_filter)
1156
yield node, node_key_filter
1158
# The slow way. We walk every item in self._items, and check to
1159
# see if there are any matches
1160
length_filters_itemview = viewitems(length_filters)
1161
for prefix, node in viewitems(self._items):
1162
node_key_filter = []
1163
for length, length_filter in length_filters_itemview:
1164
sub_prefix = prefix[:length]
1165
if sub_prefix in length_filter:
1166
node_key_filter.extend(prefix_to_keys[sub_prefix])
1167
if node_key_filter: # this key matched something, yield it
1168
if node.__class__ is StaticTuple:
1169
keys[node] = (prefix, node_key_filter)
1171
yield node, node_key_filter
1173
# Look in the page cache for some more bytes
1177
bytes = _get_cache()[key]
1181
node = _deserialise(bytes, key,
1182
search_key_func=self._search_key_func)
1183
prefix, node_key_filter = keys[key]
1184
self._items[prefix] = node
1186
yield node, node_key_filter
1187
for key in found_keys:
1190
# demand load some pages.
1191
if batch_size is None:
1192
# Read all the keys in
1193
batch_size = len(keys)
1194
key_order = list(keys)
1195
for batch_start in range(0, len(key_order), batch_size):
1196
batch = key_order[batch_start:batch_start + batch_size]
1197
# We have to fully consume the stream so there is no pending
1198
# I/O, so we buffer the nodes for now.
1199
stream = store.get_record_stream(batch, 'unordered', True)
1200
node_and_filters = []
1201
for record in stream:
1202
bytes = record.get_bytes_as('fulltext')
1203
node = _deserialise(bytes, record.key,
1204
search_key_func=self._search_key_func)
1205
prefix, node_key_filter = keys[record.key]
1206
node_and_filters.append((node, node_key_filter))
1207
self._items[prefix] = node
1208
_get_cache()[record.key] = bytes
1209
for info in node_and_filters:
1212
def map(self, store, key, value):
1213
"""Map key to value."""
1214
if not len(self._items):
1215
raise AssertionError("can't map in an empty InternalNode.")
1216
search_key = self._search_key(key)
1217
if self._node_width != len(self._search_prefix) + 1:
1218
raise AssertionError("node width mismatch: %d is not %d" %
1219
(self._node_width, len(self._search_prefix) + 1))
1220
if not search_key.startswith(self._search_prefix):
1221
# This key doesn't fit in this index, so we need to split at the
1222
# point where it would fit, insert self into that internal node,
1223
# and then map this key into that node.
1224
new_prefix = self.common_prefix(self._search_prefix,
1226
new_parent = InternalNode(new_prefix,
1227
search_key_func=self._search_key_func)
1228
new_parent.set_maximum_size(self._maximum_size)
1229
new_parent._key_width = self._key_width
1230
new_parent.add_node(self._search_prefix[:len(new_prefix) + 1],
1232
return new_parent.map(store, key, value)
1233
children = [node for node, _ in self._iter_nodes(
1234
store, key_filter=[key])]
1239
child = self._new_child(search_key, LeafNode)
1240
old_len = len(child)
1241
if isinstance(child, LeafNode):
1242
old_size = child._current_size()
1245
prefix, node_details = child.map(store, key, value)
1246
if len(node_details) == 1:
1247
# child may have shrunk, or might be a new node
1248
child = node_details[0][1]
1249
self._len = self._len - old_len + len(child)
1250
self._items[search_key] = child
1253
if isinstance(child, LeafNode):
1254
if old_size is None:
1255
# The old node was an InternalNode which means it has now
1256
# collapsed, so we need to check if it will chain to a
1257
# collapse at this level.
1258
trace.mutter("checking remap as InternalNode -> LeafNode")
1259
new_node = self._check_remap(store)
1261
# If the LeafNode has shrunk in size, we may want to run
1262
# a remap check. Checking for a remap is expensive though
1263
# and the frequency of a successful remap is very low.
1264
# Shrinkage by small amounts is common, so we only do the
1265
# remap check if the new_size is low or the shrinkage
1266
# amount is over a configurable limit.
1267
new_size = child._current_size()
1268
shrinkage = old_size - new_size
1269
if (shrinkage > 0 and new_size < _INTERESTING_NEW_SIZE or
1270
shrinkage > _INTERESTING_SHRINKAGE_LIMIT):
1272
"checking remap as size shrunk by %d to be %d",
1273
shrinkage, new_size)
1274
new_node = self._check_remap(store)
1275
if new_node._search_prefix is None:
1276
raise AssertionError("_search_prefix should not be None")
1277
return new_node._search_prefix, [(b'', new_node)]
1278
# child has overflown - create a new intermediate node.
1279
# XXX: This is where we might want to try and expand our depth
1280
# to refer to more bytes of every child (which would give us
1281
# multiple pointers to child nodes, but less intermediate nodes)
1282
child = self._new_child(search_key, InternalNode)
1283
child._search_prefix = prefix
1284
for split, node in node_details:
1285
child.add_node(split, node)
1286
self._len = self._len - old_len + len(child)
1288
return self._search_prefix, [(b"", self)]
1290
def _new_child(self, search_key, klass):
1291
"""Create a new child node of type klass."""
1293
child.set_maximum_size(self._maximum_size)
1294
child._key_width = self._key_width
1295
child._search_key_func = self._search_key_func
1296
self._items[search_key] = child
1299
def serialise(self, store):
1300
"""Serialise the node to store.
1302
:param store: A VersionedFiles honouring the CHK extensions.
1303
:return: An iterable of the keys inserted by this operation.
1305
for node in viewvalues(self._items):
1306
if isinstance(node, StaticTuple):
1307
# Never deserialised.
1309
if node._key is not None:
1312
for key in node.serialise(store):
1314
lines = [b"chknode:\n"]
1315
lines.append(b"%d\n" % self._maximum_size)
1316
lines.append(b"%d\n" % self._key_width)
1317
lines.append(b"%d\n" % self._len)
1318
if self._search_prefix is None:
1319
raise AssertionError("_search_prefix should not be None")
1320
lines.append(b'%s\n' % (self._search_prefix,))
1321
prefix_len = len(self._search_prefix)
1322
for prefix, node in sorted(viewitems(self._items)):
1323
if isinstance(node, StaticTuple):
1327
serialised = b"%s\x00%s\n" % (prefix, key)
1328
if not serialised.startswith(self._search_prefix):
1329
raise AssertionError("prefixes mismatch: %s must start with %s"
1330
% (serialised, self._search_prefix))
1331
lines.append(serialised[prefix_len:])
1332
sha1, _, _ = store.add_lines((None,), (), lines)
1333
self._key = StaticTuple(b"sha1:" + sha1,).intern()
1334
_get_cache()[self._key] = b''.join(lines)
1337
def _search_key(self, key):
1338
"""Return the serialised key for key in this node."""
1339
# search keys are fixed width. All will be self._node_width wide, so we
1341
return (self._search_key_func(key) + b'\x00' * self._node_width)[:self._node_width]
1343
def _search_prefix_filter(self, key):
1344
"""Serialise key for use as a prefix filter in iteritems."""
1345
return self._search_key_func(key)[:self._node_width]
1347
def _split(self, offset):
1348
"""Split this node into smaller nodes starting at offset.
1350
:param offset: The offset to start the new child nodes at.
1351
:return: An iterable of (prefix, node) tuples. prefix is a byte
1352
prefix for reaching node.
1354
if offset >= self._node_width:
1355
for node in valueview(self._items):
1356
for result in node._split(offset):
1360
"""Return the references to other CHK's held by this node."""
1361
if self._key is None:
1362
raise AssertionError("unserialised nodes have no refs.")
1364
for value in viewvalues(self._items):
1365
if isinstance(value, StaticTuple):
1368
refs.append(value.key())
1371
def _compute_search_prefix(self, extra_key=None):
1372
"""Return the unique key prefix for this node.
1374
:return: A bytestring of the longest search key prefix that is
1375
unique within this node.
1377
self._search_prefix = self.common_prefix_for_keys(self._items)
1378
return self._search_prefix
1380
def unmap(self, store, key, check_remap=True):
1381
"""Remove key from this node and its children."""
1382
if not len(self._items):
1383
raise AssertionError("can't unmap in an empty InternalNode.")
1384
children = [node for node, _
1385
in self._iter_nodes(store, key_filter=[key])]
1391
unmapped = child.unmap(store, key)
1393
search_key = self._search_key(key)
1394
if len(unmapped) == 0:
1395
# All child nodes are gone, remove the child:
1396
del self._items[search_key]
1399
# Stash the returned node
1400
self._items[search_key] = unmapped
1401
if len(self._items) == 1:
1402
# this node is no longer needed:
1403
return list(viewvalues(self._items))[0]
1404
if isinstance(unmapped, InternalNode):
1407
return self._check_remap(store)
1411
def _check_remap(self, store):
1412
"""Check if all keys contained by children fit in a single LeafNode.
1414
:param store: A store to use for reading more nodes
1415
:return: Either self, or a new LeafNode which should replace self.
1417
# Logic for how we determine when we need to rebuild
1418
# 1) Implicitly unmap() is removing a key which means that the child
1419
# nodes are going to be shrinking by some extent.
1420
# 2) If all children are LeafNodes, it is possible that they could be
1421
# combined into a single LeafNode, which can then completely replace
1422
# this internal node with a single LeafNode
1423
# 3) If *one* child is an InternalNode, we assume it has already done
1424
# all the work to determine that its children cannot collapse, and
1425
# we can then assume that those nodes *plus* the current nodes don't
1426
# have a chance of collapsing either.
1427
# So a very cheap check is to just say if 'unmapped' is an
1428
# InternalNode, we don't have to check further.
1430
# TODO: Another alternative is to check the total size of all known
1431
# LeafNodes. If there is some formula we can use to determine the
1432
# final size without actually having to read in any more
1433
# children, it would be nice to have. However, we have to be
1434
# careful with stuff like nodes that pull out the common prefix
1435
# of each key, as adding a new key can change the common prefix
1436
# and cause size changes greater than the length of one key.
1437
# So for now, we just add everything to a new Leaf until it
1438
# splits, as we know that will give the right answer
1439
new_leaf = LeafNode(search_key_func=self._search_key_func)
1440
new_leaf.set_maximum_size(self._maximum_size)
1441
new_leaf._key_width = self._key_width
1442
# A batch_size of 16 was chosen because:
1443
# a) In testing, a 4k page held 14 times. So if we have more than 16
1444
# leaf nodes we are unlikely to hold them in a single new leaf
1445
# node. This still allows for 1 round trip
1446
# b) With 16-way fan out, we can still do a single round trip
1447
# c) With 255-way fan out, we don't want to read all 255 and destroy
1448
# the page cache, just to determine that we really don't need it.
1449
for node, _ in self._iter_nodes(store, batch_size=16):
1450
if isinstance(node, InternalNode):
1451
# Without looking at any leaf nodes, we are sure
1453
for key, value in viewitems(node._items):
1454
if new_leaf._map_no_split(key, value):
1456
trace.mutter("remap generated a new LeafNode")
1460
def _deserialise(data, key, search_key_func):
1461
"""Helper for repositorydetails - convert bytes to a node."""
1462
if data.startswith(b"chkleaf:\n"):
1463
node = LeafNode.deserialise(data, key, search_key_func=search_key_func)
1464
elif data.startswith(b"chknode:\n"):
1465
node = InternalNode.deserialise(data, key,
1466
search_key_func=search_key_func)
1468
raise AssertionError("Unknown node type.")
1472
class CHKMapDifference(object):
1473
"""Iterate the stored pages and key,value pairs for (new - old).
1475
This class provides a generator over the stored CHK pages and the
1476
(key, value) pairs that are in any of the new maps and not in any of the
1479
Note that it may yield chk pages that are common (especially root nodes),
1480
but it won't yield (key,value) pairs that are common.
1483
def __init__(self, store, new_root_keys, old_root_keys,
1484
search_key_func, pb=None):
1485
# TODO: Should we add a StaticTuple barrier here? It would be nice to
1486
# force callers to use StaticTuple, because there will often be
1487
# lots of keys passed in here. And even if we cast it locally,
1488
# that just meanst that we will have *both* a StaticTuple and a
1489
# tuple() in memory, referring to the same object. (so a net
1490
# increase in memory, not a decrease.)
1492
self._new_root_keys = new_root_keys
1493
self._old_root_keys = old_root_keys
1495
# All uninteresting chks that we have seen. By the time they are added
1496
# here, they should be either fully ignored, or queued up for
1498
# TODO: This might grow to a large size if there are lots of merge
1499
# parents, etc. However, it probably doesn't scale to O(history)
1500
# like _processed_new_refs does.
1501
self._all_old_chks = set(self._old_root_keys)
1502
# All items that we have seen from the old_root_keys
1503
self._all_old_items = set()
1504
# These are interesting items which were either read, or already in the
1505
# interesting queue (so we don't need to walk them again)
1506
# TODO: processed_new_refs becomes O(all_chks), consider switching to
1508
self._processed_new_refs = set()
1509
self._search_key_func = search_key_func
1511
# The uninteresting and interesting nodes to be searched
1512
self._old_queue = []
1513
self._new_queue = []
1514
# Holds the (key, value) items found when processing the root nodes,
1515
# waiting for the uninteresting nodes to be walked
1516
self._new_item_queue = []
1519
def _read_nodes_from_store(self, keys):
1520
# We chose not to use _get_cache(), because we think in
1521
# terms of records to be yielded. Also, we expect to touch each page
1522
# only 1 time during this code. (We may want to evaluate saving the
1523
# raw bytes into the page cache, which would allow a working tree
1524
# update after the fetch to not have to read the bytes again.)
1525
as_st = StaticTuple.from_sequence
1526
stream = self._store.get_record_stream(keys, 'unordered', True)
1527
for record in stream:
1528
if self._pb is not None:
1530
if record.storage_kind == 'absent':
1531
raise errors.NoSuchRevision(self._store, record.key)
1532
bytes = record.get_bytes_as('fulltext')
1533
node = _deserialise(bytes, record.key,
1534
search_key_func=self._search_key_func)
1535
if isinstance(node, InternalNode):
1536
# Note we don't have to do node.refs() because we know that
1537
# there are no children that have been pushed into this node
1538
# Note: Using as_st() here seemed to save 1.2MB, which would
1539
# indicate that we keep 100k prefix_refs around while
1540
# processing. They *should* be shorter lived than that...
1541
# It does cost us ~10s of processing time
1542
prefix_refs = list(viewitems(node._items))
1546
# Note: We don't use a StaticTuple here. Profiling showed a
1547
# minor memory improvement (0.8MB out of 335MB peak 0.2%)
1548
# But a significant slowdown (15s / 145s, or 10%)
1549
items = list(viewitems(node._items))
1550
yield record, node, prefix_refs, items
1552
def _read_old_roots(self):
1553
old_chks_to_enqueue = []
1554
all_old_chks = self._all_old_chks
1555
for record, node, prefix_refs, items in \
1556
self._read_nodes_from_store(self._old_root_keys):
1557
# Uninteresting node
1558
prefix_refs = [p_r for p_r in prefix_refs
1559
if p_r[1] not in all_old_chks]
1560
new_refs = [p_r[1] for p_r in prefix_refs]
1561
all_old_chks.update(new_refs)
1562
# TODO: This might be a good time to turn items into StaticTuple
1563
# instances and possibly intern them. However, this does not
1564
# impact 'initial branch' performance, so I'm not worrying
1566
self._all_old_items.update(items)
1567
# Queue up the uninteresting references
1568
# Don't actually put them in the 'to-read' queue until we have
1569
# finished checking the interesting references
1570
old_chks_to_enqueue.extend(prefix_refs)
1571
return old_chks_to_enqueue
1573
def _enqueue_old(self, new_prefixes, old_chks_to_enqueue):
1574
# At this point, we have read all the uninteresting and interesting
1575
# items, so we can queue up the uninteresting stuff, knowing that we've
1576
# handled the interesting ones
1577
for prefix, ref in old_chks_to_enqueue:
1578
not_interesting = True
1579
for i in range(len(prefix), 0, -1):
1580
if prefix[:i] in new_prefixes:
1581
not_interesting = False
1584
# This prefix is not part of the remaining 'interesting set'
1586
self._old_queue.append(ref)
1588
def _read_all_roots(self):
1589
"""Read the root pages.
1591
This is structured as a generator, so that the root records can be
1592
yielded up to whoever needs them without any buffering.
1594
# This is the bootstrap phase
1595
if not self._old_root_keys:
1596
# With no old_root_keys we can just shortcut and be ready
1597
# for _flush_new_queue
1598
self._new_queue = list(self._new_root_keys)
1600
old_chks_to_enqueue = self._read_old_roots()
1601
# filter out any root keys that are already known to be uninteresting
1602
new_keys = set(self._new_root_keys).difference(self._all_old_chks)
1603
# These are prefixes that are present in new_keys that we are
1605
new_prefixes = set()
1606
# We are about to yield all of these, so we don't want them getting
1607
# added a second time
1608
processed_new_refs = self._processed_new_refs
1609
processed_new_refs.update(new_keys)
1610
for record, node, prefix_refs, items in \
1611
self._read_nodes_from_store(new_keys):
1612
# At this level, we now know all the uninteresting references
1613
# So we filter and queue up whatever is remaining
1614
prefix_refs = [p_r for p_r in prefix_refs
1615
if p_r[1] not in self._all_old_chks and
1616
p_r[1] not in processed_new_refs]
1617
refs = [p_r[1] for p_r in prefix_refs]
1618
new_prefixes.update([p_r[0] for p_r in prefix_refs])
1619
self._new_queue.extend(refs)
1620
# TODO: We can potentially get multiple items here, however the
1621
# current design allows for this, as callers will do the work
1622
# to make the results unique. We might profile whether we
1623
# gain anything by ensuring unique return values for items
1624
# TODO: This might be a good time to cast to StaticTuple, as
1625
# self._new_item_queue will hold the contents of multiple
1626
# records for an extended lifetime
1627
new_items = [item for item in items
1628
if item not in self._all_old_items]
1629
self._new_item_queue.extend(new_items)
1630
new_prefixes.update([self._search_key_func(item[0])
1631
for item in new_items])
1632
processed_new_refs.update(refs)
1634
# For new_prefixes we have the full length prefixes queued up.
1635
# However, we also need possible prefixes. (If we have a known ref to
1636
# 'ab', then we also need to include 'a'.) So expand the
1637
# new_prefixes to include all shorter prefixes
1638
for prefix in list(new_prefixes):
1639
new_prefixes.update([prefix[:i] for i in range(1, len(prefix))])
1640
self._enqueue_old(new_prefixes, old_chks_to_enqueue)
1642
def _flush_new_queue(self):
1643
# No need to maintain the heap invariant anymore, just pull things out
1645
refs = set(self._new_queue)
1646
self._new_queue = []
1647
# First pass, flush all interesting items and convert to using direct refs
1648
all_old_chks = self._all_old_chks
1649
processed_new_refs = self._processed_new_refs
1650
all_old_items = self._all_old_items
1651
new_items = [item for item in self._new_item_queue
1652
if item not in all_old_items]
1653
self._new_item_queue = []
1655
yield None, new_items
1656
refs = refs.difference(all_old_chks)
1657
processed_new_refs.update(refs)
1659
# TODO: Using a SimpleSet for self._processed_new_refs and
1660
# saved as much as 10MB of peak memory. However, it requires
1661
# implementing a non-pyrex version.
1663
next_refs_update = next_refs.update
1664
# Inlining _read_nodes_from_store improves 'bzr branch bzr.dev'
1665
# from 1m54s to 1m51s. Consider it.
1666
for record, _, p_refs, items in self._read_nodes_from_store(refs):
1668
# using the 'if' check saves about 145s => 141s, when
1669
# streaming initial branch of Launchpad data.
1670
items = [item for item in items
1671
if item not in all_old_items]
1673
next_refs_update([p_r[1] for p_r in p_refs])
1675
# set1.difference(set/dict) walks all of set1, and checks if it
1676
# exists in 'other'.
1677
# set1.difference(iterable) walks all of iterable, and does a
1678
# 'difference_update' on a clone of set1. Pick wisely based on the
1679
# expected sizes of objects.
1680
# in our case it is expected that 'new_refs' will always be quite
1682
next_refs = next_refs.difference(all_old_chks)
1683
next_refs = next_refs.difference(processed_new_refs)
1684
processed_new_refs.update(next_refs)
1687
def _process_next_old(self):
1688
# Since we don't filter uninteresting any further than during
1689
# _read_all_roots, process the whole queue in a single pass.
1690
refs = self._old_queue
1691
self._old_queue = []
1692
all_old_chks = self._all_old_chks
1693
for record, _, prefix_refs, items in self._read_nodes_from_store(refs):
1694
# TODO: Use StaticTuple here?
1695
self._all_old_items.update(items)
1696
refs = [r for _, r in prefix_refs if r not in all_old_chks]
1697
self._old_queue.extend(refs)
1698
all_old_chks.update(refs)
1700
def _process_queues(self):
1701
while self._old_queue:
1702
self._process_next_old()
1703
return self._flush_new_queue()
1706
for record in self._read_all_roots():
1708
for record, items in self._process_queues():
1712
def iter_interesting_nodes(store, interesting_root_keys,
1713
uninteresting_root_keys, pb=None):
1714
"""Given root keys, find interesting nodes.
1716
Evaluate nodes referenced by interesting_root_keys. Ones that are also
1717
referenced from uninteresting_root_keys are not considered interesting.
1719
:param interesting_root_keys: keys which should be part of the
1720
"interesting" nodes (which will be yielded)
1721
:param uninteresting_root_keys: keys which should be filtered out of the
1724
(interesting record, {interesting key:values})
1726
iterator = CHKMapDifference(store, interesting_root_keys,
1727
uninteresting_root_keys,
1728
search_key_func=store._search_key_func,
1730
return iterator.process()
1734
from ._chk_map_pyx import (
1738
_deserialise_leaf_node,
1739
_deserialise_internal_node,
1741
except ImportError as e:
1742
osutils.failed_to_load_extension(e)
1743
from ._chk_map_py import (
1747
_deserialise_leaf_node,
1748
_deserialise_internal_node,
1750
search_key_registry.register(b'hash-16-way', _search_key_16)
1751
search_key_registry.register(b'hash-255-way', _search_key_255)
1754
def _check_key(key):
1755
"""Helper function to assert that a key is properly formatted.
1757
This generally shouldn't be used in production code, but it can be helpful
1760
if not isinstance(key, StaticTuple):
1761
raise TypeError('key %r is not StaticTuple but %s' % (key, type(key)))
1763
raise ValueError('key %r should have length 1, not %d' %
1765
if not isinstance(key[0], str):
1766
raise TypeError('key %r should hold a str, not %r'
1767
% (key, type(key[0])))
1768
if not key[0].startswith('sha1:'):
1769
raise ValueError('key %r should point to a sha1:' % (key,))