1
# Copyright (C) 2008 Canonical Ltd
3
# This program is free software; you can redistribute it and/or modify
4
# it under the terms of the GNU General Public License as published by
5
# the Free Software Foundation; either version 2 of the License, or
6
# (at your option) any later version.
8
# This program is distributed in the hope that it will be useful,
9
# but WITHOUT ANY WARRANTY; without even the implied warranty of
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11
# GNU General Public License for more details.
13
# You should have received a copy of the GNU General Public License
14
# along with this program; if not, write to the Free Software
15
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
from bisect import bisect_right
36
from bzrlib.index import _OPTION_NODE_REFS, _OPTION_KEY_ELEMENTS, _OPTION_LEN
37
from bzrlib.transport import get_transport
40
_BTSIGNATURE = "B+Tree Graph Index 2\n"
41
_OPTION_ROW_LENGTHS = "row_lengths="
42
_LEAF_FLAG = "type=leaf\n"
43
_INTERNAL_FLAG = "type=internal\n"
44
_INTERNAL_OFFSET = "offset="
46
_RESERVED_HEADER_BYTES = 120
49
# 4K per page: 4MB - 1000 entries
50
_NODE_CACHE_SIZE = 1000
53
class _BuilderRow(object):
54
"""The stored state accumulated while writing out a row in the index.
56
:ivar spool: A temporary file used to accumulate nodes for this row
58
:ivar nodes: The count of nodes emitted so far.
62
"""Create a _BuilderRow."""
64
self.spool = None# tempfile.TemporaryFile(prefix='bzr-index-row-')
67
def finish_node(self, pad=True):
68
byte_lines, _, padding = self.writer.finish()
70
self.spool = cStringIO.StringIO()
72
self.spool.write("\x00" * _RESERVED_HEADER_BYTES)
74
# We got bigger than 1 node, switch to a temp file
75
spool = tempfile.TemporaryFile(prefix='bzr-index-row-')
76
spool.write(self.spool.getvalue())
79
if not pad and padding:
81
skipped_bytes = padding
82
self.spool.writelines(byte_lines)
83
remainder = (self.spool.tell() + skipped_bytes) % _PAGE_SIZE
85
raise AssertionError("incorrect node length: %d, %d"
86
% (self.spool.tell(), remainder))
91
class _InternalBuilderRow(_BuilderRow):
92
"""The stored state accumulated while writing out internal rows."""
94
def finish_node(self, pad=True):
96
raise AssertionError("Must pad internal nodes only.")
97
_BuilderRow.finish_node(self)
100
class _LeafBuilderRow(_BuilderRow):
101
"""The stored state accumulated while writing out a leaf rows."""
104
class BTreeBuilder(index.GraphIndexBuilder):
105
"""A Builder for B+Tree based Graph indices.
107
The resulting graph has the structure:
109
_SIGNATURE OPTIONS NODES
110
_SIGNATURE := 'B+Tree Graph Index 1' NEWLINE
111
OPTIONS := REF_LISTS KEY_ELEMENTS LENGTH
112
REF_LISTS := 'node_ref_lists=' DIGITS NEWLINE
113
KEY_ELEMENTS := 'key_elements=' DIGITS NEWLINE
114
LENGTH := 'len=' DIGITS NEWLINE
115
ROW_LENGTHS := 'row_lengths' DIGITS (COMMA DIGITS)*
116
NODES := NODE_COMPRESSED*
117
NODE_COMPRESSED:= COMPRESSED_BYTES{4096}
118
NODE_RAW := INTERNAL | LEAF
119
INTERNAL := INTERNAL_FLAG POINTERS
120
LEAF := LEAF_FLAG ROWS
121
KEY_ELEMENT := Not-whitespace-utf8
122
KEY := KEY_ELEMENT (NULL KEY_ELEMENT)*
124
ROW := KEY NULL ABSENT? NULL REFERENCES NULL VALUE NEWLINE
126
REFERENCES := REFERENCE_LIST (TAB REFERENCE_LIST){node_ref_lists - 1}
127
REFERENCE_LIST := (REFERENCE (CR REFERENCE)*)?
129
VALUE := no-newline-no-null-bytes
132
def __init__(self, reference_lists=0, key_elements=1, spill_at=100000):
133
"""See GraphIndexBuilder.__init__.
135
:param spill_at: Optional parameter controlling the maximum number
136
of nodes that BTreeBuilder will hold in memory.
138
index.GraphIndexBuilder.__init__(self, reference_lists=reference_lists,
139
key_elements=key_elements)
140
self._spill_at = spill_at
141
self._backing_indices = []
142
# A map of {key: (node_refs, value)}
144
# Indicate it hasn't been built yet
145
self._nodes_by_key = None
146
self._optimize_for_size = False
148
def add_node(self, key, value, references=()):
149
"""Add a node to the index.
151
If adding the node causes the builder to reach its spill_at threshold,
152
disk spilling will be triggered.
154
:param key: The key. keys are non-empty tuples containing
155
as many whitespace-free utf8 bytestrings as the key length
156
defined for this index.
157
:param references: An iterable of iterables of keys. Each is a
158
reference to another key.
159
:param value: The value to associate with the key. It may be any
160
bytes as long as it does not contain \0 or \n.
162
# we don't care about absent_references
163
node_refs, _ = self._check_key_ref_value(key, references, value)
164
if key in self._nodes:
165
raise errors.BadIndexDuplicateKey(key, self)
166
self._nodes[key] = (node_refs, value)
168
if self._nodes_by_key is not None and self._key_length > 1:
169
self._update_nodes_by_key(key, value, node_refs)
170
if len(self._keys) < self._spill_at:
172
self._spill_mem_keys_to_disk()
174
def _spill_mem_keys_to_disk(self):
175
"""Write the in memory keys down to disk to cap memory consumption.
177
If we already have some keys written to disk, we will combine them so
178
as to preserve the sorted order. The algorithm for combining uses
179
powers of two. So on the first spill, write all mem nodes into a
180
single index. On the second spill, combine the mem nodes with the nodes
181
on disk to create a 2x sized disk index and get rid of the first index.
182
On the third spill, create a single new disk index, which will contain
183
the mem nodes, and preserve the existing 2x sized index. On the fourth,
184
combine mem with the first and second indexes, creating a new one of
185
size 4x. On the fifth create a single new one, etc.
187
if self._combine_backing_indices:
188
(new_backing_file, size,
189
backing_pos) = self._spill_mem_keys_and_combine()
191
new_backing_file, size = self._spill_mem_keys_without_combining()
192
# Note: The transport here isn't strictly needed, because we will use
193
# direct access to the new_backing._file object
194
new_backing = BTreeGraphIndex(get_transport('.'), '<temp>', size)
195
# GC will clean up the file
196
new_backing._file = new_backing_file
197
if self._combine_backing_indices:
198
if len(self._backing_indices) == backing_pos:
199
self._backing_indices.append(None)
200
self._backing_indices[backing_pos] = new_backing
201
for backing_pos in range(backing_pos):
202
self._backing_indices[backing_pos] = None
204
self._backing_indices.append(new_backing)
207
self._nodes_by_key = None
209
def _spill_mem_keys_without_combining(self):
210
return self._write_nodes(self._iter_mem_nodes(), allow_optimize=False)
212
def _spill_mem_keys_and_combine(self):
213
iterators_to_combine = [self._iter_mem_nodes()]
215
for pos, backing in enumerate(self._backing_indices):
219
iterators_to_combine.append(backing.iter_all_entries())
220
backing_pos = pos + 1
221
new_backing_file, size = \
222
self._write_nodes(self._iter_smallest(iterators_to_combine),
223
allow_optimize=False)
224
return new_backing_file, size, backing_pos
226
def add_nodes(self, nodes):
227
"""Add nodes to the index.
229
:param nodes: An iterable of (key, node_refs, value) entries to add.
231
if self.reference_lists:
232
for (key, value, node_refs) in nodes:
233
self.add_node(key, value, node_refs)
235
for (key, value) in nodes:
236
self.add_node(key, value)
238
def _iter_mem_nodes(self):
239
"""Iterate over the nodes held in memory."""
241
if self.reference_lists:
242
for key in sorted(nodes):
243
references, value = nodes[key]
244
yield self, key, value, references
246
for key in sorted(nodes):
247
references, value = nodes[key]
248
yield self, key, value
250
def _iter_smallest(self, iterators_to_combine):
251
if len(iterators_to_combine) == 1:
252
for value in iterators_to_combine[0]:
256
for iterator in iterators_to_combine:
258
current_values.append(iterator.next())
259
except StopIteration:
260
current_values.append(None)
263
# Decorate candidates with the value to allow 2.4's min to be used.
264
candidates = [(item[1][1], item) for item
265
in enumerate(current_values) if item[1] is not None]
266
if not len(candidates):
268
selected = min(candidates)
269
# undecorate back to (pos, node)
270
selected = selected[1]
271
if last == selected[1][1]:
272
raise errors.BadIndexDuplicateKey(last, self)
273
last = selected[1][1]
274
# Yield, with self as the index
275
yield (self,) + selected[1][1:]
278
current_values[pos] = iterators_to_combine[pos].next()
279
except StopIteration:
280
current_values[pos] = None
282
def _add_key(self, string_key, line, rows, allow_optimize=True):
283
"""Add a key to the current chunk.
285
:param string_key: The key to add.
286
:param line: The fully serialised key and value.
287
:param allow_optimize: If set to False, prevent setting the optimize
288
flag when writing out. This is used by the _spill_mem_keys_to_disk
291
if rows[-1].writer is None:
292
# opening a new leaf chunk;
293
for pos, internal_row in enumerate(rows[:-1]):
294
# flesh out any internal nodes that are needed to
295
# preserve the height of the tree
296
if internal_row.writer is None:
298
if internal_row.nodes == 0:
299
length -= _RESERVED_HEADER_BYTES # padded
301
optimize_for_size = self._optimize_for_size
303
optimize_for_size = False
304
internal_row.writer = chunk_writer.ChunkWriter(length, 0,
305
optimize_for_size=optimize_for_size)
306
internal_row.writer.write(_INTERNAL_FLAG)
307
internal_row.writer.write(_INTERNAL_OFFSET +
308
str(rows[pos + 1].nodes) + "\n")
311
if rows[-1].nodes == 0:
312
length -= _RESERVED_HEADER_BYTES # padded
313
rows[-1].writer = chunk_writer.ChunkWriter(length,
314
optimize_for_size=self._optimize_for_size)
315
rows[-1].writer.write(_LEAF_FLAG)
316
if rows[-1].writer.write(line):
317
# this key did not fit in the node:
318
rows[-1].finish_node()
319
key_line = string_key + "\n"
321
for row in reversed(rows[:-1]):
322
# Mark the start of the next node in the node above. If it
323
# doesn't fit then propagate upwards until we find one that
325
if row.writer.write(key_line):
328
# We've found a node that can handle the pointer.
331
# If we reached the current root without being able to mark the
332
# division point, then we need a new root:
335
if 'index' in debug.debug_flags:
336
trace.mutter('Inserting new global row.')
337
new_row = _InternalBuilderRow()
339
rows.insert(0, new_row)
340
# This will be padded, hence the -100
341
new_row.writer = chunk_writer.ChunkWriter(
342
_PAGE_SIZE - _RESERVED_HEADER_BYTES,
344
optimize_for_size=self._optimize_for_size)
345
new_row.writer.write(_INTERNAL_FLAG)
346
new_row.writer.write(_INTERNAL_OFFSET +
347
str(rows[1].nodes - 1) + "\n")
348
new_row.writer.write(key_line)
349
self._add_key(string_key, line, rows, allow_optimize=allow_optimize)
351
def _write_nodes(self, node_iterator, allow_optimize=True):
352
"""Write node_iterator out as a B+Tree.
354
:param node_iterator: An iterator of sorted nodes. Each node should
355
match the output given by iter_all_entries.
356
:param allow_optimize: If set to False, prevent setting the optimize
357
flag when writing out. This is used by the _spill_mem_keys_to_disk
359
:return: A file handle for a temporary file containing a B+Tree for
362
# The index rows - rows[0] is the root, rows[1] is the layer under it
365
# forward sorted by key. In future we may consider topological sorting,
366
# at the cost of table scans for direct lookup, or a second index for
369
# A stack with the number of nodes of each size. 0 is the root node
370
# and must always be 1 (if there are any nodes in the tree).
371
self.row_lengths = []
372
# Loop over all nodes adding them to the bottom row
373
# (rows[-1]). When we finish a chunk in a row,
374
# propagate the key that didn't fit (comes after the chunk) to the
375
# row above, transitively.
376
for node in node_iterator:
378
# First key triggers the first row
379
rows.append(_LeafBuilderRow())
381
string_key, line = _btree_serializer._flatten_node(node,
382
self.reference_lists)
383
self._add_key(string_key, line, rows, allow_optimize=allow_optimize)
384
for row in reversed(rows):
385
pad = (type(row) != _LeafBuilderRow)
386
row.finish_node(pad=pad)
387
lines = [_BTSIGNATURE]
388
lines.append(_OPTION_NODE_REFS + str(self.reference_lists) + '\n')
389
lines.append(_OPTION_KEY_ELEMENTS + str(self._key_length) + '\n')
390
lines.append(_OPTION_LEN + str(key_count) + '\n')
391
row_lengths = [row.nodes for row in rows]
392
lines.append(_OPTION_ROW_LENGTHS + ','.join(map(str, row_lengths)) + '\n')
393
if row_lengths and row_lengths[-1] > 1:
394
result = tempfile.NamedTemporaryFile(prefix='bzr-index-')
396
result = cStringIO.StringIO()
397
result.writelines(lines)
398
position = sum(map(len, lines))
400
if position > _RESERVED_HEADER_BYTES:
401
raise AssertionError("Could not fit the header in the"
402
" reserved space: %d > %d"
403
% (position, _RESERVED_HEADER_BYTES))
404
# write the rows out:
406
reserved = _RESERVED_HEADER_BYTES # reserved space for first node
409
# copy nodes to the finalised file.
410
# Special case the first node as it may be prefixed
411
node = row.spool.read(_PAGE_SIZE)
412
result.write(node[reserved:])
413
result.write("\x00" * (reserved - position))
414
position = 0 # Only the root row actually has an offset
415
copied_len = osutils.pumpfile(row.spool, result)
416
if copied_len != (row.nodes - 1) * _PAGE_SIZE:
417
if type(row) != _LeafBuilderRow:
418
raise AssertionError("Incorrect amount of data copied"
419
" expected: %d, got: %d"
420
% ((row.nodes - 1) * _PAGE_SIZE,
428
"""Finalise the index.
430
:return: A file handle for a temporary file containing the nodes added
433
return self._write_nodes(self.iter_all_entries())[0]
435
def iter_all_entries(self):
436
"""Iterate over all keys within the index
438
:return: An iterable of (index, key, value, reference_lists). There is
439
no defined order for the result iteration - it will be in the most
440
efficient order for the index (in this case dictionary hash order).
442
if 'evil' in debug.debug_flags:
443
trace.mutter_callsite(3,
444
"iter_all_entries scales with size of history.")
445
# Doing serial rather than ordered would be faster; but this shouldn't
446
# be getting called routinely anyway.
447
iterators = [self._iter_mem_nodes()]
448
for backing in self._backing_indices:
449
if backing is not None:
450
iterators.append(backing.iter_all_entries())
451
if len(iterators) == 1:
453
return self._iter_smallest(iterators)
455
def iter_entries(self, keys):
456
"""Iterate over keys within the index.
458
:param keys: An iterable providing the keys to be retrieved.
459
:return: An iterable of (index, key, value, reference_lists). There is no
460
defined order for the result iteration - it will be in the most
461
efficient order for the index (keys iteration order in this case).
464
local_keys = keys.intersection(self._keys)
465
if self.reference_lists:
466
for key in local_keys:
467
node = self._nodes[key]
468
yield self, key, node[1], node[0]
470
for key in local_keys:
471
node = self._nodes[key]
472
yield self, key, node[1]
473
# Find things that are in backing indices that have not been handled
475
if not self._backing_indices:
476
return # We won't find anything there either
477
# Remove all of the keys that we found locally
478
keys.difference_update(local_keys)
479
for backing in self._backing_indices:
484
for node in backing.iter_entries(keys):
486
yield (self,) + node[1:]
488
def iter_entries_prefix(self, keys):
489
"""Iterate over keys within the index using prefix matching.
491
Prefix matching is applied within the tuple of a key, not to within
492
the bytestring of each key element. e.g. if you have the keys ('foo',
493
'bar'), ('foobar', 'gam') and do a prefix search for ('foo', None) then
494
only the former key is returned.
496
:param keys: An iterable providing the key prefixes to be retrieved.
497
Each key prefix takes the form of a tuple the length of a key, but
498
with the last N elements 'None' rather than a regular bytestring.
499
The first element cannot be 'None'.
500
:return: An iterable as per iter_all_entries, but restricted to the
501
keys with a matching prefix to those supplied. No additional keys
502
will be returned, and every match that is in the index will be
505
# XXX: To much duplication with the GraphIndex class; consider finding
506
# a good place to pull out the actual common logic.
510
for backing in self._backing_indices:
513
for node in backing.iter_entries_prefix(keys):
514
yield (self,) + node[1:]
515
if self._key_length == 1:
519
raise errors.BadIndexKey(key)
520
if len(key) != self._key_length:
521
raise errors.BadIndexKey(key)
523
node = self._nodes[key]
526
if self.reference_lists:
527
yield self, key, node[1], node[0]
529
yield self, key, node[1]
534
raise errors.BadIndexKey(key)
535
if len(key) != self._key_length:
536
raise errors.BadIndexKey(key)
537
# find what it refers to:
538
key_dict = self._get_nodes_by_key()
540
# find the subdict to return
542
while len(elements) and elements[0] is not None:
543
key_dict = key_dict[elements[0]]
546
# a non-existant lookup.
551
key_dict = dicts.pop(-1)
552
# can't be empty or would not exist
553
item, value = key_dict.iteritems().next()
554
if type(value) == dict:
556
dicts.extend(key_dict.itervalues())
559
for value in key_dict.itervalues():
560
yield (self, ) + value
562
yield (self, ) + key_dict
564
def _get_nodes_by_key(self):
565
if self._nodes_by_key is None:
567
if self.reference_lists:
568
for key, (references, value) in self._nodes.iteritems():
569
key_dict = nodes_by_key
570
for subkey in key[:-1]:
571
key_dict = key_dict.setdefault(subkey, {})
572
key_dict[key[-1]] = key, value, references
574
for key, (references, value) in self._nodes.iteritems():
575
key_dict = nodes_by_key
576
for subkey in key[:-1]:
577
key_dict = key_dict.setdefault(subkey, {})
578
key_dict[key[-1]] = key, value
579
self._nodes_by_key = nodes_by_key
580
return self._nodes_by_key
583
"""Return an estimate of the number of keys in this index.
585
For InMemoryGraphIndex the estimate is exact.
587
return len(self._keys) + sum(backing.key_count() for backing in
588
self._backing_indices if backing is not None)
591
"""In memory index's have no known corruption at the moment."""
594
class _LeafNode(object):
595
"""A leaf node for a serialised B+Tree index."""
597
__slots__ = ('keys', 'min_key', 'max_key')
599
def __init__(self, bytes, key_length, ref_list_length):
600
"""Parse bytes to create a leaf node object."""
601
# splitlines mangles the \r delimiters.. don't use it.
602
key_list = _btree_serializer._parse_leaf_lines(bytes,
603
key_length, ref_list_length)
605
self.min_key = key_list[0][0]
606
self.max_key = key_list[-1][0]
608
self.min_key = self.max_key = None
609
self.keys = dict(key_list)
612
class _InternalNode(object):
613
"""An internal node for a serialised B+Tree index."""
615
__slots__ = ('keys', 'offset')
617
def __init__(self, bytes):
618
"""Parse bytes to create an internal node object."""
619
# splitlines mangles the \r delimiters.. don't use it.
620
self.keys = self._parse_lines(bytes.split('\n'))
622
def _parse_lines(self, lines):
624
self.offset = int(lines[1][7:])
625
for line in lines[2:]:
628
nodes.append(tuple(map(intern, line.split('\0'))))
632
class BTreeGraphIndex(object):
633
"""Access to nodes via the standard GraphIndex interface for B+Tree's.
635
Individual nodes are held in a LRU cache. This holds the root node in
636
memory except when very large walks are done.
639
def __init__(self, transport, name, size, unlimited_cache=False):
640
"""Create a B+Tree index object on the index name.
642
:param transport: The transport to read data for the index from.
643
:param name: The file name of the index on transport.
644
:param size: Optional size of the index in bytes. This allows
645
compatibility with the GraphIndex API, as well as ensuring that
646
the initial read (to read the root node header) can be done
647
without over-reading even on empty indices, and on small indices
648
allows single-IO to read the entire index.
649
:param unlimited_cache: If set to True, then instead of using an
650
LRUCache with size _NODE_CACHE_SIZE, we will use a dict and always
651
cache all leaf nodes.
653
self._transport = transport
657
self._recommended_pages = self._compute_recommended_pages()
658
self._root_node = None
659
# Default max size is 100,000 leave values
660
self._leaf_value_cache = None # lru_cache.LRUCache(100*1000)
662
self._leaf_node_cache = {}
663
self._internal_node_cache = {}
665
self._leaf_node_cache = lru_cache.LRUCache(_NODE_CACHE_SIZE)
666
# We use a FIFO here just to prevent possible blowout. However, a
667
# 300k record btree has only 3k leaf nodes, and only 20 internal
668
# nodes. A value of 100 scales to ~100*100*100 = 1M records.
669
self._internal_node_cache = fifo_cache.FIFOCache(100)
670
self._key_count = None
671
self._row_lengths = None
672
self._row_offsets = None # Start of each row, [-1] is the end
674
def __eq__(self, other):
675
"""Equal when self and other were created with the same parameters."""
677
type(self) == type(other) and
678
self._transport == other._transport and
679
self._name == other._name and
680
self._size == other._size)
682
def __ne__(self, other):
683
return not self.__eq__(other)
685
def _get_and_cache_nodes(self, nodes):
686
"""Read nodes and cache them in the lru.
688
The nodes list supplied is sorted and then read from disk, each node
689
being inserted it into the _node_cache.
691
Note: Asking for more nodes than the _node_cache can contain will
692
result in some of the results being immediately discarded, to prevent
693
this an assertion is raised if more nodes are asked for than are
696
:return: A dict of {node_pos: node}
699
start_of_leaves = None
700
for node_pos, node in self._read_nodes(sorted(nodes)):
701
if node_pos == 0: # Special case
702
self._root_node = node
704
if start_of_leaves is None:
705
start_of_leaves = self._row_offsets[-2]
706
if node_pos < start_of_leaves:
707
self._internal_node_cache[node_pos] = node
709
self._leaf_node_cache[node_pos] = node
710
found[node_pos] = node
713
def _compute_recommended_pages(self):
714
"""Convert transport's recommended_page_size into btree pages.
716
recommended_page_size is in bytes, we want to know how many _PAGE_SIZE
717
pages fit in that length.
719
recommended_read = self._transport.recommended_page_size()
720
recommended_pages = int(math.ceil(recommended_read /
722
return recommended_pages
724
def _compute_total_pages_in_index(self):
725
"""How many pages are in the index.
727
If we have read the header we will use the value stored there.
728
Otherwise it will be computed based on the length of the index.
730
if self._size is None:
731
raise AssertionError('_compute_total_pages_in_index should not be'
732
' called when self._size is None')
733
if self._root_node is not None:
734
# This is the number of pages as defined by the header
735
return self._row_offsets[-1]
736
# This is the number of pages as defined by the size of the index. They
737
# should be indentical.
738
total_pages = int(math.ceil(self._size / float(_PAGE_SIZE)))
741
def _expand_offsets(self, offsets):
742
"""Find extra pages to download.
744
The idea is that we always want to make big-enough requests (like 64kB
745
for http), so that we don't waste round trips. So given the entries
746
that we already have cached and the new pages being downloaded figure
747
out what other pages we might want to read.
749
See also doc/developers/btree_index_prefetch.txt for more details.
751
:param offsets: The offsets to be read
752
:return: A list of offsets to download
754
if 'index' in debug.debug_flags:
755
trace.mutter('expanding: %s\toffsets: %s', self._name, offsets)
757
if len(offsets) >= self._recommended_pages:
758
# Don't add more, we are already requesting more than enough
759
if 'index' in debug.debug_flags:
760
trace.mutter(' not expanding large request (%s >= %s)',
761
len(offsets), self._recommended_pages)
763
if self._size is None:
764
# Don't try anything, because we don't know where the file ends
765
if 'index' in debug.debug_flags:
766
trace.mutter(' not expanding without knowing index size')
768
total_pages = self._compute_total_pages_in_index()
769
cached_offsets = self._get_offsets_to_cached_pages()
770
# If reading recommended_pages would read the rest of the index, just
772
if total_pages - len(cached_offsets) <= self._recommended_pages:
773
# Read whatever is left
775
expanded = [x for x in xrange(total_pages)
776
if x not in cached_offsets]
778
expanded = range(total_pages)
779
if 'index' in debug.debug_flags:
780
trace.mutter(' reading all unread pages: %s', expanded)
783
if self._root_node is None:
784
# ATM on the first read of the root node of a large index, we don't
785
# bother pre-reading any other pages. This is because the
786
# likelyhood of actually reading interesting pages is very low.
787
# See doc/developers/btree_index_prefetch.txt for a discussion, and
788
# a possible implementation when we are guessing that the second
789
# layer index is small
790
final_offsets = offsets
792
tree_depth = len(self._row_lengths)
793
if len(cached_offsets) < tree_depth and len(offsets) == 1:
794
# We haven't read enough to justify expansion
795
# If we are only going to read the root node, and 1 leaf node,
796
# then it isn't worth expanding our request. Once we've read at
797
# least 2 nodes, then we are probably doing a search, and we
798
# start expanding our requests.
799
if 'index' in debug.debug_flags:
800
trace.mutter(' not expanding on first reads')
802
final_offsets = self._expand_to_neighbors(offsets, cached_offsets,
805
final_offsets = sorted(final_offsets)
806
if 'index' in debug.debug_flags:
807
trace.mutter('expanded: %s', final_offsets)
810
def _expand_to_neighbors(self, offsets, cached_offsets, total_pages):
811
"""Expand requests to neighbors until we have enough pages.
813
This is called from _expand_offsets after policy has determined that we
815
We only want to expand requests within a given layer. We cheat a little
816
bit and assume all requests will be in the same layer. This is true
817
given the current design, but if it changes this algorithm may perform
820
:param offsets: requested offsets
821
:param cached_offsets: offsets for pages we currently have cached
822
:return: A set() of offsets after expansion
824
final_offsets = set(offsets)
826
new_tips = set(final_offsets)
827
while len(final_offsets) < self._recommended_pages and new_tips:
831
first, end = self._find_layer_first_and_end(pos)
834
and previous not in cached_offsets
835
and previous not in final_offsets
836
and previous >= first):
837
next_tips.add(previous)
839
if (after < total_pages
840
and after not in cached_offsets
841
and after not in final_offsets
844
# This would keep us from going bigger than
845
# recommended_pages by only expanding the first offsets.
846
# However, if we are making a 'wide' request, it is
847
# reasonable to expand all points equally.
848
# if len(final_offsets) > recommended_pages:
850
final_offsets.update(next_tips)
854
def external_references(self, ref_list_num):
855
if self._root_node is None:
856
self._get_root_node()
857
if ref_list_num + 1 > self.node_ref_lists:
858
raise ValueError('No ref list %d, index has %d ref lists'
859
% (ref_list_num, self.node_ref_lists))
862
for node in self.iter_all_entries():
864
refs.update(node[3][ref_list_num])
867
def _find_layer_first_and_end(self, offset):
868
"""Find the start/stop nodes for the layer corresponding to offset.
870
:return: (first, end)
871
first is the first node in this layer
872
end is the first node of the next layer
875
for roffset in self._row_offsets:
882
def _get_offsets_to_cached_pages(self):
883
"""Determine what nodes we already have cached."""
884
cached_offsets = set(self._internal_node_cache.keys())
885
cached_offsets.update(self._leaf_node_cache.keys())
886
if self._root_node is not None:
887
cached_offsets.add(0)
888
return cached_offsets
890
def _get_root_node(self):
891
if self._root_node is None:
892
# We may not have a root node yet
893
self._get_internal_nodes([0])
894
return self._root_node
896
def _get_nodes(self, cache, node_indexes):
899
for idx in node_indexes:
900
if idx == 0 and self._root_node is not None:
901
found[0] = self._root_node
904
found[idx] = cache[idx]
909
needed = self._expand_offsets(needed)
910
found.update(self._get_and_cache_nodes(needed))
913
def _get_internal_nodes(self, node_indexes):
914
"""Get a node, from cache or disk.
916
After getting it, the node will be cached.
918
return self._get_nodes(self._internal_node_cache, node_indexes)
920
def _cache_leaf_values(self, nodes):
921
"""Cache directly from key => value, skipping the btree."""
922
if self._leaf_value_cache is not None:
923
for node in nodes.itervalues():
924
for key, value in node.keys.iteritems():
925
if key in self._leaf_value_cache:
926
# Don't add the rest of the keys, we've seen this node
929
self._leaf_value_cache[key] = value
931
def _get_leaf_nodes(self, node_indexes):
932
"""Get a bunch of nodes, from cache or disk."""
933
found = self._get_nodes(self._leaf_node_cache, node_indexes)
934
self._cache_leaf_values(found)
937
def iter_all_entries(self):
938
"""Iterate over all keys within the index.
940
:return: An iterable of (index, key, value) or (index, key, value, reference_lists).
941
The former tuple is used when there are no reference lists in the
942
index, making the API compatible with simple key:value index types.
943
There is no defined order for the result iteration - it will be in
944
the most efficient order for the index.
946
if 'evil' in debug.debug_flags:
947
trace.mutter_callsite(3,
948
"iter_all_entries scales with size of history.")
949
if not self.key_count():
951
if self._row_offsets[-1] == 1:
952
# There is only the root node, and we read that via key_count()
953
if self.node_ref_lists:
954
for key, (value, refs) in sorted(self._root_node.keys.items()):
955
yield (self, key, value, refs)
957
for key, (value, refs) in sorted(self._root_node.keys.items()):
958
yield (self, key, value)
960
start_of_leaves = self._row_offsets[-2]
961
end_of_leaves = self._row_offsets[-1]
962
needed_offsets = range(start_of_leaves, end_of_leaves)
963
if needed_offsets == [0]:
964
# Special case when we only have a root node, as we have already
966
nodes = [(0, self._root_node)]
968
nodes = self._read_nodes(needed_offsets)
969
# We iterate strictly in-order so that we can use this function
970
# for spilling index builds to disk.
971
if self.node_ref_lists:
972
for _, node in nodes:
973
for key, (value, refs) in sorted(node.keys.items()):
974
yield (self, key, value, refs)
976
for _, node in nodes:
977
for key, (value, refs) in sorted(node.keys.items()):
978
yield (self, key, value)
981
def _multi_bisect_right(in_keys, fixed_keys):
982
"""Find the positions where each 'in_key' would fit in fixed_keys.
984
This is equivalent to doing "bisect_right" on each in_key into
987
:param in_keys: A sorted list of keys to match with fixed_keys
988
:param fixed_keys: A sorted list of keys to match against
989
:return: A list of (integer position, [key list]) tuples.
994
# no pointers in the fixed_keys list, which means everything must
996
return [(0, in_keys)]
998
# TODO: Iterating both lists will generally take M + N steps
999
# Bisecting each key will generally take M * log2 N steps.
1000
# If we had an efficient way to compare, we could pick the method
1001
# based on which has the fewer number of steps.
1002
# There is also the argument that bisect_right is a compiled
1003
# function, so there is even more to be gained.
1004
# iter_steps = len(in_keys) + len(fixed_keys)
1005
# bisect_steps = len(in_keys) * math.log(len(fixed_keys), 2)
1006
if len(in_keys) == 1: # Bisect will always be faster for M = 1
1007
return [(bisect_right(fixed_keys, in_keys[0]), in_keys)]
1008
# elif bisect_steps < iter_steps:
1010
# for key in in_keys:
1011
# offsets.setdefault(bisect_right(fixed_keys, key),
1013
# return [(o, offsets[o]) for o in sorted(offsets)]
1014
in_keys_iter = iter(in_keys)
1015
fixed_keys_iter = enumerate(fixed_keys)
1016
cur_in_key = in_keys_iter.next()
1017
cur_fixed_offset, cur_fixed_key = fixed_keys_iter.next()
1019
class InputDone(Exception): pass
1020
class FixedDone(Exception): pass
1025
# TODO: Another possibility is that rather than iterating on each side,
1026
# we could use a combination of bisecting and iterating. For
1027
# example, while cur_in_key < fixed_key, bisect to find its
1028
# point, then iterate all matching keys, then bisect (restricted
1029
# to only the remainder) for the next one, etc.
1032
if cur_in_key < cur_fixed_key:
1034
cur_out = (cur_fixed_offset, cur_keys)
1035
output.append(cur_out)
1036
while cur_in_key < cur_fixed_key:
1037
cur_keys.append(cur_in_key)
1039
cur_in_key = in_keys_iter.next()
1040
except StopIteration:
1042
# At this point cur_in_key must be >= cur_fixed_key
1043
# step the cur_fixed_key until we pass the cur key, or walk off
1045
while cur_in_key >= cur_fixed_key:
1047
cur_fixed_offset, cur_fixed_key = fixed_keys_iter.next()
1048
except StopIteration:
1051
# We consumed all of the input, nothing more to do
1054
# There was some input left, but we consumed all of fixed, so we
1055
# have to add one more for the tail
1056
cur_keys = [cur_in_key]
1057
cur_keys.extend(in_keys_iter)
1058
cur_out = (len(fixed_keys), cur_keys)
1059
output.append(cur_out)
1062
def _walk_through_internal_nodes(self, keys):
1063
"""Take the given set of keys, and find the corresponding LeafNodes.
1065
:param keys: An unsorted iterable of keys to search for
1066
:return: (nodes, index_and_keys)
1067
nodes is a dict mapping {index: LeafNode}
1068
keys_at_index is a list of tuples of [(index, [keys for Leaf])]
1070
# 6 seconds spent in miss_torture using the sorted() line.
1071
# Even with out of order disk IO it seems faster not to sort it when
1072
# large queries are being made.
1073
keys_at_index = [(0, sorted(keys))]
1075
for row_pos, next_row_start in enumerate(self._row_offsets[1:-1]):
1076
node_indexes = [idx for idx, s_keys in keys_at_index]
1077
nodes = self._get_internal_nodes(node_indexes)
1079
next_nodes_and_keys = []
1080
for node_index, sub_keys in keys_at_index:
1081
node = nodes[node_index]
1082
positions = self._multi_bisect_right(sub_keys, node.keys)
1083
node_offset = next_row_start + node.offset
1084
next_nodes_and_keys.extend([(node_offset + pos, s_keys)
1085
for pos, s_keys in positions])
1086
keys_at_index = next_nodes_and_keys
1087
# We should now be at the _LeafNodes
1088
node_indexes = [idx for idx, s_keys in keys_at_index]
1090
# TODO: We may *not* want to always read all the nodes in one
1091
# big go. Consider setting a max size on this.
1092
nodes = self._get_leaf_nodes(node_indexes)
1093
return nodes, keys_at_index
1095
def iter_entries(self, keys):
1096
"""Iterate over keys within the index.
1098
:param keys: An iterable providing the keys to be retrieved.
1099
:return: An iterable as per iter_all_entries, but restricted to the
1100
keys supplied. No additional keys will be returned, and every
1101
key supplied that is in the index will be returned.
1103
# 6 seconds spent in miss_torture using the sorted() line.
1104
# Even with out of order disk IO it seems faster not to sort it when
1105
# large queries are being made.
1106
# However, now that we are doing multi-way bisecting, we need the keys
1107
# in sorted order anyway. We could change the multi-way code to not
1108
# require sorted order. (For example, it bisects for the first node,
1109
# does an in-order search until a key comes before the current point,
1110
# which it then bisects for, etc.)
1111
keys = frozenset(keys)
1115
if not self.key_count():
1119
if self._leaf_value_cache is None:
1123
value = self._leaf_value_cache.get(key, None)
1124
if value is not None:
1125
# This key is known not to be here, skip it
1127
if self.node_ref_lists:
1128
yield (self, key, value, refs)
1130
yield (self, key, value)
1132
needed_keys.append(key)
1138
nodes, nodes_and_keys = self._walk_through_internal_nodes(needed_keys)
1139
for node_index, sub_keys in nodes_and_keys:
1142
node = nodes[node_index]
1143
for next_sub_key in sub_keys:
1144
if next_sub_key in node.keys:
1145
value, refs = node.keys[next_sub_key]
1146
if self.node_ref_lists:
1147
yield (self, next_sub_key, value, refs)
1149
yield (self, next_sub_key, value)
1151
def _find_ancestors(self, keys, ref_list_num, parent_map, missing_keys):
1152
"""Find the parent_map information for the set of keys.
1154
This populates the parent_map dict and missing_keys set based on the
1155
queried keys. It also can fill out an arbitrary number of parents that
1156
it finds while searching for the supplied keys.
1158
It is unlikely that you want to call this directly. See
1159
"CombinedGraphIndex.find_ancestry()" for a more appropriate API.
1161
:param keys: A keys whose ancestry we want to return
1162
Every key will either end up in 'parent_map' or 'missing_keys'.
1163
:param ref_list_num: This index in the ref_lists is the parents we
1165
:param parent_map: {key: parent_keys} for keys that are present in this
1166
index. This may contain more entries than were in 'keys', that are
1167
reachable ancestors of the keys requested.
1168
:param missing_keys: keys which are known to be missing in this index.
1169
This may include parents that were not directly requested, but we
1170
were able to determine that they are not present in this index.
1171
:return: search_keys parents that were found but not queried to know
1172
if they are missing or present. Callers can re-query this index for
1173
those keys, and they will be placed into parent_map or missing_keys
1175
if not self.key_count():
1176
# We use key_count() to trigger reading the root node and
1177
# determining info about this BTreeGraphIndex
1178
# If we don't have any keys, then everything is missing
1179
missing_keys.update(keys)
1181
if ref_list_num >= self.node_ref_lists:
1182
raise ValueError('No ref list %d, index has %d ref lists'
1183
% (ref_list_num, self.node_ref_lists))
1185
# The main trick we are trying to accomplish is that when we find a
1186
# key listing its parents, we expect that the parent key is also likely
1187
# to sit on the same page. Allowing us to expand parents quickly
1188
# without suffering the full stack of bisecting, etc.
1189
nodes, nodes_and_keys = self._walk_through_internal_nodes(keys)
1191
# These are parent keys which could not be immediately resolved on the
1192
# page where the child was present. Note that we may already be
1193
# searching for that key, and it may actually be present [or known
1194
# missing] on one of the other pages we are reading.
1196
# We could try searching for them in the immediate previous or next
1197
# page. If they occur "later" we could put them in a pending lookup
1198
# set, and then for each node we read thereafter we could check to
1199
# see if they are present.
1200
# However, we don't know the impact of keeping this list of things
1201
# that I'm going to search for every node I come across from here on
1203
# It doesn't handle the case when the parent key is missing on a
1204
# page that we *don't* read. So we already have to handle being
1205
# re-entrant for that.
1206
# Since most keys contain a date string, they are more likely to be
1207
# found earlier in the file than later, but we would know that right
1208
# away (key < min_key), and wouldn't keep searching it on every other
1209
# page that we read.
1210
# Mostly, it is an idea, one which should be benchmarked.
1211
parents_not_on_page = set()
1213
for node_index, sub_keys in nodes_and_keys:
1216
# sub_keys is all of the keys we are looking for that should exist
1217
# on this page, if they aren't here, then they won't be found
1218
node = nodes[node_index]
1219
node_keys = node.keys
1220
parents_to_check = set()
1221
for next_sub_key in sub_keys:
1222
if next_sub_key not in node_keys:
1223
# This one is just not present in the index at all
1224
missing_keys.add(next_sub_key)
1226
value, refs = node_keys[next_sub_key]
1227
parent_keys = refs[ref_list_num]
1228
parent_map[next_sub_key] = parent_keys
1229
parents_to_check.update(parent_keys)
1230
# Don't look for things we've already found
1231
parents_to_check = parents_to_check.difference(parent_map)
1232
# this can be used to test the benefit of having the check loop
1234
# parents_not_on_page.update(parents_to_check)
1236
while parents_to_check:
1237
next_parents_to_check = set()
1238
for key in parents_to_check:
1239
if key in node_keys:
1240
value, refs = node_keys[key]
1241
parent_keys = refs[ref_list_num]
1242
parent_map[key] = parent_keys
1243
next_parents_to_check.update(parent_keys)
1245
# This parent either is genuinely missing, or should be
1246
# found on another page. Perf test whether it is better
1247
# to check if this node should fit on this page or not.
1248
# in the 'everything-in-one-pack' scenario, this *not*
1249
# doing the check is 237ms vs 243ms.
1250
# So slightly better, but I assume the standard 'lots
1251
# of packs' is going to show a reasonable improvement
1252
# from the check, because it avoids 'going around
1253
# again' for everything that is in another index
1254
# parents_not_on_page.add(key)
1255
# Missing for some reason
1256
if key < node.min_key:
1257
# in the case of bzr.dev, 3.4k/5.3k misses are
1258
# 'earlier' misses (65%)
1259
parents_not_on_page.add(key)
1260
elif key > node.max_key:
1261
# This parent key would be present on a different
1263
parents_not_on_page.add(key)
1265
# assert key != node.min_key and key != node.max_key
1266
# If it was going to be present, it would be on
1267
# *this* page, so mark it missing.
1268
missing_keys.add(key)
1269
parents_to_check = next_parents_to_check.difference(parent_map)
1270
# Might want to do another .difference() from missing_keys
1271
# parents_not_on_page could have been found on a different page, or be
1272
# known to be missing. So cull out everything that has already been
1274
search_keys = parents_not_on_page.difference(
1275
parent_map).difference(missing_keys)
1278
def iter_entries_prefix(self, keys):
1279
"""Iterate over keys within the index using prefix matching.
1281
Prefix matching is applied within the tuple of a key, not to within
1282
the bytestring of each key element. e.g. if you have the keys ('foo',
1283
'bar'), ('foobar', 'gam') and do a prefix search for ('foo', None) then
1284
only the former key is returned.
1286
WARNING: Note that this method currently causes a full index parse
1287
unconditionally (which is reasonably appropriate as it is a means for
1288
thunking many small indices into one larger one and still supplies
1289
iter_all_entries at the thunk layer).
1291
:param keys: An iterable providing the key prefixes to be retrieved.
1292
Each key prefix takes the form of a tuple the length of a key, but
1293
with the last N elements 'None' rather than a regular bytestring.
1294
The first element cannot be 'None'.
1295
:return: An iterable as per iter_all_entries, but restricted to the
1296
keys with a matching prefix to those supplied. No additional keys
1297
will be returned, and every match that is in the index will be
1300
keys = sorted(set(keys))
1303
# Load if needed to check key lengths
1304
if self._key_count is None:
1305
self._get_root_node()
1306
# TODO: only access nodes that can satisfy the prefixes we are looking
1307
# for. For now, to meet API usage (as this function is not used by
1308
# current bzrlib) just suck the entire index and iterate in memory.
1310
if self.node_ref_lists:
1311
if self._key_length == 1:
1312
for _1, key, value, refs in self.iter_all_entries():
1313
nodes[key] = value, refs
1316
for _1, key, value, refs in self.iter_all_entries():
1317
key_value = key, value, refs
1318
# For a key of (foo, bar, baz) create
1319
# _nodes_by_key[foo][bar][baz] = key_value
1320
key_dict = nodes_by_key
1321
for subkey in key[:-1]:
1322
key_dict = key_dict.setdefault(subkey, {})
1323
key_dict[key[-1]] = key_value
1325
if self._key_length == 1:
1326
for _1, key, value in self.iter_all_entries():
1330
for _1, key, value in self.iter_all_entries():
1331
key_value = key, value
1332
# For a key of (foo, bar, baz) create
1333
# _nodes_by_key[foo][bar][baz] = key_value
1334
key_dict = nodes_by_key
1335
for subkey in key[:-1]:
1336
key_dict = key_dict.setdefault(subkey, {})
1337
key_dict[key[-1]] = key_value
1338
if self._key_length == 1:
1342
raise errors.BadIndexKey(key)
1343
if len(key) != self._key_length:
1344
raise errors.BadIndexKey(key)
1346
if self.node_ref_lists:
1347
value, node_refs = nodes[key]
1348
yield self, key, value, node_refs
1350
yield self, key, nodes[key]
1357
raise errors.BadIndexKey(key)
1358
if len(key) != self._key_length:
1359
raise errors.BadIndexKey(key)
1360
# find what it refers to:
1361
key_dict = nodes_by_key
1362
elements = list(key)
1363
# find the subdict whose contents should be returned.
1365
while len(elements) and elements[0] is not None:
1366
key_dict = key_dict[elements[0]]
1369
# a non-existant lookup.
1374
key_dict = dicts.pop(-1)
1375
# can't be empty or would not exist
1376
item, value = key_dict.iteritems().next()
1377
if type(value) == dict:
1379
dicts.extend(key_dict.itervalues())
1382
for value in key_dict.itervalues():
1383
# each value is the key:value:node refs tuple
1385
yield (self, ) + value
1387
# the last thing looked up was a terminal element
1388
yield (self, ) + key_dict
1390
def key_count(self):
1391
"""Return an estimate of the number of keys in this index.
1393
For BTreeGraphIndex the estimate is exact as it is contained in the
1396
if self._key_count is None:
1397
self._get_root_node()
1398
return self._key_count
1400
def _compute_row_offsets(self):
1401
"""Fill out the _row_offsets attribute based on _row_lengths."""
1404
for row in self._row_lengths:
1405
offsets.append(row_offset)
1407
offsets.append(row_offset)
1408
self._row_offsets = offsets
1410
def _parse_header_from_bytes(self, bytes):
1411
"""Parse the header from a region of bytes.
1413
:param bytes: The data to parse.
1414
:return: An offset, data tuple such as readv yields, for the unparsed
1415
data. (which may be of length 0).
1417
signature = bytes[0:len(self._signature())]
1418
if not signature == self._signature():
1419
raise errors.BadIndexFormatSignature(self._name, BTreeGraphIndex)
1420
lines = bytes[len(self._signature()):].splitlines()
1421
options_line = lines[0]
1422
if not options_line.startswith(_OPTION_NODE_REFS):
1423
raise errors.BadIndexOptions(self)
1425
self.node_ref_lists = int(options_line[len(_OPTION_NODE_REFS):])
1427
raise errors.BadIndexOptions(self)
1428
options_line = lines[1]
1429
if not options_line.startswith(_OPTION_KEY_ELEMENTS):
1430
raise errors.BadIndexOptions(self)
1432
self._key_length = int(options_line[len(_OPTION_KEY_ELEMENTS):])
1434
raise errors.BadIndexOptions(self)
1435
options_line = lines[2]
1436
if not options_line.startswith(_OPTION_LEN):
1437
raise errors.BadIndexOptions(self)
1439
self._key_count = int(options_line[len(_OPTION_LEN):])
1441
raise errors.BadIndexOptions(self)
1442
options_line = lines[3]
1443
if not options_line.startswith(_OPTION_ROW_LENGTHS):
1444
raise errors.BadIndexOptions(self)
1446
self._row_lengths = map(int, [length for length in
1447
options_line[len(_OPTION_ROW_LENGTHS):].split(',')
1450
raise errors.BadIndexOptions(self)
1451
self._compute_row_offsets()
1453
# calculate the bytes we have processed
1454
header_end = (len(signature) + sum(map(len, lines[0:4])) + 4)
1455
return header_end, bytes[header_end:]
1457
def _read_nodes(self, nodes):
1458
"""Read some nodes from disk into the LRU cache.
1460
This performs a readv to get the node data into memory, and parses each
1461
node, then yields it to the caller. The nodes are requested in the
1462
supplied order. If possible doing sort() on the list before requesting
1463
a read may improve performance.
1465
:param nodes: The nodes to read. 0 - first node, 1 - second node etc.
1468
# may be the byte string of the whole file
1470
# list of (offset, length) regions of the file that should, evenually
1471
# be read in to data_ranges, either from 'bytes' or from the transport
1474
offset = index * _PAGE_SIZE
1477
# Root node - special case
1479
size = min(_PAGE_SIZE, self._size)
1481
# The only case where we don't know the size, is for very
1482
# small indexes. So we read the whole thing
1483
bytes = self._transport.get_bytes(self._name)
1484
self._size = len(bytes)
1485
# the whole thing should be parsed out of 'bytes'
1486
ranges.append((0, len(bytes)))
1489
if offset > self._size:
1490
raise AssertionError('tried to read past the end'
1491
' of the file %s > %s'
1492
% (offset, self._size))
1493
size = min(size, self._size - offset)
1494
ranges.append((offset, size))
1497
elif bytes is not None:
1498
# already have the whole file
1499
data_ranges = [(start, bytes[start:start+_PAGE_SIZE])
1500
for start in xrange(0, len(bytes), _PAGE_SIZE)]
1501
elif self._file is None:
1502
data_ranges = self._transport.readv(self._name, ranges)
1505
for offset, size in ranges:
1506
self._file.seek(offset)
1507
data_ranges.append((offset, self._file.read(size)))
1508
for offset, data in data_ranges:
1510
# extract the header
1511
offset, data = self._parse_header_from_bytes(data)
1514
bytes = zlib.decompress(data)
1515
if bytes.startswith(_LEAF_FLAG):
1516
node = _LeafNode(bytes, self._key_length, self.node_ref_lists)
1517
elif bytes.startswith(_INTERNAL_FLAG):
1518
node = _InternalNode(bytes)
1520
raise AssertionError("Unknown node type for %r" % bytes)
1521
yield offset / _PAGE_SIZE, node
1523
def _signature(self):
1524
"""The file signature for this index type."""
1528
"""Validate that everything in the index can be accessed."""
1529
# just read and parse every node.
1530
self._get_root_node()
1531
if len(self._row_lengths) > 1:
1532
start_node = self._row_offsets[1]
1534
# We shouldn't be reading anything anyway
1536
node_end = self._row_offsets[-1]
1537
for node in self._read_nodes(range(start_node, node_end)):
1542
from bzrlib import _btree_serializer_pyx as _btree_serializer
1543
except ImportError, e:
1544
osutils.failed_to_load_extension(e)
1545
from bzrlib import _btree_serializer_py as _btree_serializer