1
# Copyright (C) 2008-2011 Canonical Ltd
3
# This program is free software; you can redistribute it and/or modify
4
# it under the terms of the GNU General Public License as published by
5
# the Free Software Foundation; either version 2 of the License, or
6
# (at your option) any later version.
8
# This program is distributed in the hope that it will be useful,
9
# but WITHOUT ANY WARRANTY; without even the implied warranty of
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11
# GNU General Public License for more details.
13
# You should have received a copy of the GNU General Public License
14
# along with this program; if not, write to the Free Software
15
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
from __future__ import absolute_import
22
from .lazy_import import lazy_import
23
lazy_import(globals(), """
42
from .index import _OPTION_NODE_REFS, _OPTION_KEY_ELEMENTS, _OPTION_LEN
53
_BTSIGNATURE = "B+Tree Graph Index 2\n"
54
_OPTION_ROW_LENGTHS = "row_lengths="
55
_LEAF_FLAG = "type=leaf\n"
56
_INTERNAL_FLAG = "type=internal\n"
57
_INTERNAL_OFFSET = "offset="
59
_RESERVED_HEADER_BYTES = 120
62
# 4K per page: 4MB - 1000 entries
63
_NODE_CACHE_SIZE = 1000
66
class _BuilderRow(object):
67
"""The stored state accumulated while writing out a row in the index.
69
:ivar spool: A temporary file used to accumulate nodes for this row
71
:ivar nodes: The count of nodes emitted so far.
75
"""Create a _BuilderRow."""
77
self.spool = None# tempfile.TemporaryFile(prefix='bzr-index-row-')
80
def finish_node(self, pad=True):
81
byte_lines, _, padding = self.writer.finish()
83
self.spool = BytesIO()
85
self.spool.write("\x00" * _RESERVED_HEADER_BYTES)
87
# We got bigger than 1 node, switch to a temp file
88
spool = tempfile.TemporaryFile(prefix='bzr-index-row-')
89
spool.write(self.spool.getvalue())
92
if not pad and padding:
94
skipped_bytes = padding
95
self.spool.writelines(byte_lines)
96
remainder = (self.spool.tell() + skipped_bytes) % _PAGE_SIZE
98
raise AssertionError("incorrect node length: %d, %d"
99
% (self.spool.tell(), remainder))
104
class _InternalBuilderRow(_BuilderRow):
105
"""The stored state accumulated while writing out internal rows."""
107
def finish_node(self, pad=True):
109
raise AssertionError("Must pad internal nodes only.")
110
_BuilderRow.finish_node(self)
113
class _LeafBuilderRow(_BuilderRow):
114
"""The stored state accumulated while writing out a leaf rows."""
117
class BTreeBuilder(index.GraphIndexBuilder):
118
"""A Builder for B+Tree based Graph indices.
120
The resulting graph has the structure:
122
_SIGNATURE OPTIONS NODES
123
_SIGNATURE := 'B+Tree Graph Index 1' NEWLINE
124
OPTIONS := REF_LISTS KEY_ELEMENTS LENGTH
125
REF_LISTS := 'node_ref_lists=' DIGITS NEWLINE
126
KEY_ELEMENTS := 'key_elements=' DIGITS NEWLINE
127
LENGTH := 'len=' DIGITS NEWLINE
128
ROW_LENGTHS := 'row_lengths' DIGITS (COMMA DIGITS)*
129
NODES := NODE_COMPRESSED*
130
NODE_COMPRESSED:= COMPRESSED_BYTES{4096}
131
NODE_RAW := INTERNAL | LEAF
132
INTERNAL := INTERNAL_FLAG POINTERS
133
LEAF := LEAF_FLAG ROWS
134
KEY_ELEMENT := Not-whitespace-utf8
135
KEY := KEY_ELEMENT (NULL KEY_ELEMENT)*
137
ROW := KEY NULL ABSENT? NULL REFERENCES NULL VALUE NEWLINE
139
REFERENCES := REFERENCE_LIST (TAB REFERENCE_LIST){node_ref_lists - 1}
140
REFERENCE_LIST := (REFERENCE (CR REFERENCE)*)?
142
VALUE := no-newline-no-null-bytes
145
def __init__(self, reference_lists=0, key_elements=1, spill_at=100000):
146
"""See GraphIndexBuilder.__init__.
148
:param spill_at: Optional parameter controlling the maximum number
149
of nodes that BTreeBuilder will hold in memory.
151
index.GraphIndexBuilder.__init__(self, reference_lists=reference_lists,
152
key_elements=key_elements)
153
self._spill_at = spill_at
154
self._backing_indices = []
155
# A map of {key: (node_refs, value)}
157
# Indicate it hasn't been built yet
158
self._nodes_by_key = None
159
self._optimize_for_size = False
161
def add_node(self, key, value, references=()):
162
"""Add a node to the index.
164
If adding the node causes the builder to reach its spill_at threshold,
165
disk spilling will be triggered.
167
:param key: The key. keys are non-empty tuples containing
168
as many whitespace-free utf8 bytestrings as the key length
169
defined for this index.
170
:param references: An iterable of iterables of keys. Each is a
171
reference to another key.
172
:param value: The value to associate with the key. It may be any
173
bytes as long as it does not contain \\0 or \\n.
175
# Ensure that 'key' is a StaticTuple
176
key = static_tuple.StaticTuple.from_sequence(key).intern()
177
# we don't care about absent_references
178
node_refs, _ = self._check_key_ref_value(key, references, value)
179
if key in self._nodes:
180
raise errors.BadIndexDuplicateKey(key, self)
181
self._nodes[key] = static_tuple.StaticTuple(node_refs, value)
182
if self._nodes_by_key is not None and self._key_length > 1:
183
self._update_nodes_by_key(key, value, node_refs)
184
if len(self._nodes) < self._spill_at:
186
self._spill_mem_keys_to_disk()
188
def _spill_mem_keys_to_disk(self):
189
"""Write the in memory keys down to disk to cap memory consumption.
191
If we already have some keys written to disk, we will combine them so
192
as to preserve the sorted order. The algorithm for combining uses
193
powers of two. So on the first spill, write all mem nodes into a
194
single index. On the second spill, combine the mem nodes with the nodes
195
on disk to create a 2x sized disk index and get rid of the first index.
196
On the third spill, create a single new disk index, which will contain
197
the mem nodes, and preserve the existing 2x sized index. On the fourth,
198
combine mem with the first and second indexes, creating a new one of
199
size 4x. On the fifth create a single new one, etc.
201
if self._combine_backing_indices:
202
(new_backing_file, size,
203
backing_pos) = self._spill_mem_keys_and_combine()
205
new_backing_file, size = self._spill_mem_keys_without_combining()
206
# Note: The transport here isn't strictly needed, because we will use
207
# direct access to the new_backing._file object
208
new_backing = BTreeGraphIndex(transport.get_transport_from_path('.'),
210
# GC will clean up the file
211
new_backing._file = new_backing_file
212
if self._combine_backing_indices:
213
if len(self._backing_indices) == backing_pos:
214
self._backing_indices.append(None)
215
self._backing_indices[backing_pos] = new_backing
216
for backing_pos in range(backing_pos):
217
self._backing_indices[backing_pos] = None
219
self._backing_indices.append(new_backing)
221
self._nodes_by_key = None
223
def _spill_mem_keys_without_combining(self):
224
return self._write_nodes(self._iter_mem_nodes(), allow_optimize=False)
226
def _spill_mem_keys_and_combine(self):
227
iterators_to_combine = [self._iter_mem_nodes()]
229
for pos, backing in enumerate(self._backing_indices):
233
iterators_to_combine.append(backing.iter_all_entries())
234
backing_pos = pos + 1
235
new_backing_file, size = \
236
self._write_nodes(self._iter_smallest(iterators_to_combine),
237
allow_optimize=False)
238
return new_backing_file, size, backing_pos
240
def add_nodes(self, nodes):
241
"""Add nodes to the index.
243
:param nodes: An iterable of (key, node_refs, value) entries to add.
245
if self.reference_lists:
246
for (key, value, node_refs) in nodes:
247
self.add_node(key, value, node_refs)
249
for (key, value) in nodes:
250
self.add_node(key, value)
252
def _iter_mem_nodes(self):
253
"""Iterate over the nodes held in memory."""
255
if self.reference_lists:
256
for key in sorted(nodes):
257
references, value = nodes[key]
258
yield self, key, value, references
260
for key in sorted(nodes):
261
references, value = nodes[key]
262
yield self, key, value
264
def _iter_smallest(self, iterators_to_combine):
265
if len(iterators_to_combine) == 1:
266
for value in iterators_to_combine[0]:
270
for iterator in iterators_to_combine:
272
current_values.append(next(iterator))
273
except StopIteration:
274
current_values.append(None)
277
# Decorate candidates with the value to allow 2.4's min to be used.
278
candidates = [(item[1][1], item) for item
279
in enumerate(current_values) if item[1] is not None]
280
if not len(candidates):
282
selected = min(candidates)
283
# undecorate back to (pos, node)
284
selected = selected[1]
285
if last == selected[1][1]:
286
raise errors.BadIndexDuplicateKey(last, self)
287
last = selected[1][1]
288
# Yield, with self as the index
289
yield (self,) + selected[1][1:]
292
current_values[pos] = next(iterators_to_combine[pos])
293
except StopIteration:
294
current_values[pos] = None
296
def _add_key(self, string_key, line, rows, allow_optimize=True):
297
"""Add a key to the current chunk.
299
:param string_key: The key to add.
300
:param line: The fully serialised key and value.
301
:param allow_optimize: If set to False, prevent setting the optimize
302
flag when writing out. This is used by the _spill_mem_keys_to_disk
306
if rows[-1].writer is None:
307
# opening a new leaf chunk;
309
for pos, internal_row in enumerate(rows[:-1]):
310
# flesh out any internal nodes that are needed to
311
# preserve the height of the tree
312
if internal_row.writer is None:
314
if internal_row.nodes == 0:
315
length -= _RESERVED_HEADER_BYTES # padded
317
optimize_for_size = self._optimize_for_size
319
optimize_for_size = False
320
internal_row.writer = chunk_writer.ChunkWriter(length, 0,
321
optimize_for_size=optimize_for_size)
322
internal_row.writer.write(_INTERNAL_FLAG)
323
internal_row.writer.write(_INTERNAL_OFFSET +
324
str(rows[pos + 1].nodes) + "\n")
327
if rows[-1].nodes == 0:
328
length -= _RESERVED_HEADER_BYTES # padded
329
rows[-1].writer = chunk_writer.ChunkWriter(length,
330
optimize_for_size=self._optimize_for_size)
331
rows[-1].writer.write(_LEAF_FLAG)
332
if rows[-1].writer.write(line):
333
# if we failed to write, despite having an empty page to write to,
334
# then line is too big. raising the error avoids infinite recursion
335
# searching for a suitably large page that will not be found.
337
raise errors.BadIndexKey(string_key)
338
# this key did not fit in the node:
339
rows[-1].finish_node()
340
key_line = string_key + "\n"
342
for row in reversed(rows[:-1]):
343
# Mark the start of the next node in the node above. If it
344
# doesn't fit then propagate upwards until we find one that
346
if row.writer.write(key_line):
349
# We've found a node that can handle the pointer.
352
# If we reached the current root without being able to mark the
353
# division point, then we need a new root:
356
if 'index' in debug.debug_flags:
357
trace.mutter('Inserting new global row.')
358
new_row = _InternalBuilderRow()
360
rows.insert(0, new_row)
361
# This will be padded, hence the -100
362
new_row.writer = chunk_writer.ChunkWriter(
363
_PAGE_SIZE - _RESERVED_HEADER_BYTES,
365
optimize_for_size=self._optimize_for_size)
366
new_row.writer.write(_INTERNAL_FLAG)
367
new_row.writer.write(_INTERNAL_OFFSET +
368
str(rows[1].nodes - 1) + "\n")
369
new_row.writer.write(key_line)
370
self._add_key(string_key, line, rows, allow_optimize=allow_optimize)
372
def _write_nodes(self, node_iterator, allow_optimize=True):
373
"""Write node_iterator out as a B+Tree.
375
:param node_iterator: An iterator of sorted nodes. Each node should
376
match the output given by iter_all_entries.
377
:param allow_optimize: If set to False, prevent setting the optimize
378
flag when writing out. This is used by the _spill_mem_keys_to_disk
380
:return: A file handle for a temporary file containing a B+Tree for
383
# The index rows - rows[0] is the root, rows[1] is the layer under it
386
# forward sorted by key. In future we may consider topological sorting,
387
# at the cost of table scans for direct lookup, or a second index for
390
# A stack with the number of nodes of each size. 0 is the root node
391
# and must always be 1 (if there are any nodes in the tree).
392
self.row_lengths = []
393
# Loop over all nodes adding them to the bottom row
394
# (rows[-1]). When we finish a chunk in a row,
395
# propagate the key that didn't fit (comes after the chunk) to the
396
# row above, transitively.
397
for node in node_iterator:
399
# First key triggers the first row
400
rows.append(_LeafBuilderRow())
402
string_key, line = _btree_serializer._flatten_node(node,
403
self.reference_lists)
404
self._add_key(string_key, line, rows, allow_optimize=allow_optimize)
405
for row in reversed(rows):
406
pad = (not isinstance(row, _LeafBuilderRow))
407
row.finish_node(pad=pad)
408
lines = [_BTSIGNATURE]
409
lines.append(_OPTION_NODE_REFS + str(self.reference_lists) + '\n')
410
lines.append(_OPTION_KEY_ELEMENTS + str(self._key_length) + '\n')
411
lines.append(_OPTION_LEN + str(key_count) + '\n')
412
row_lengths = [row.nodes for row in rows]
413
lines.append(_OPTION_ROW_LENGTHS + ','.join(map(str, row_lengths)) + '\n')
414
if row_lengths and row_lengths[-1] > 1:
415
result = tempfile.NamedTemporaryFile(prefix='bzr-index-')
418
result.writelines(lines)
419
position = sum(map(len, lines))
421
if position > _RESERVED_HEADER_BYTES:
422
raise AssertionError("Could not fit the header in the"
423
" reserved space: %d > %d"
424
% (position, _RESERVED_HEADER_BYTES))
425
# write the rows out:
427
reserved = _RESERVED_HEADER_BYTES # reserved space for first node
430
# copy nodes to the finalised file.
431
# Special case the first node as it may be prefixed
432
node = row.spool.read(_PAGE_SIZE)
433
result.write(node[reserved:])
434
if len(node) == _PAGE_SIZE:
435
result.write("\x00" * (reserved - position))
436
position = 0 # Only the root row actually has an offset
437
copied_len = osutils.pumpfile(row.spool, result)
438
if copied_len != (row.nodes - 1) * _PAGE_SIZE:
439
if not isinstance(row, _LeafBuilderRow):
440
raise AssertionError("Incorrect amount of data copied"
441
" expected: %d, got: %d"
442
% ((row.nodes - 1) * _PAGE_SIZE,
450
"""Finalise the index.
452
:return: A file handle for a temporary file containing the nodes added
455
return self._write_nodes(self.iter_all_entries())[0]
457
def iter_all_entries(self):
458
"""Iterate over all keys within the index
460
:return: An iterable of (index, key, value, reference_lists). There is
461
no defined order for the result iteration - it will be in the most
462
efficient order for the index (in this case dictionary hash order).
464
if 'evil' in debug.debug_flags:
465
trace.mutter_callsite(3,
466
"iter_all_entries scales with size of history.")
467
# Doing serial rather than ordered would be faster; but this shouldn't
468
# be getting called routinely anyway.
469
iterators = [self._iter_mem_nodes()]
470
for backing in self._backing_indices:
471
if backing is not None:
472
iterators.append(backing.iter_all_entries())
473
if len(iterators) == 1:
475
return self._iter_smallest(iterators)
477
def iter_entries(self, keys):
478
"""Iterate over keys within the index.
480
:param keys: An iterable providing the keys to be retrieved.
481
:return: An iterable of (index, key, value, reference_lists). There is no
482
defined order for the result iteration - it will be in the most
483
efficient order for the index (keys iteration order in this case).
486
# Note: We don't use keys.intersection() here. If you read the C api,
487
# set.intersection(other) special cases when other is a set and
488
# will iterate the smaller of the two and lookup in the other.
489
# It does *not* do this for any other type (even dict, unlike
490
# some other set functions.) Since we expect keys is generally <<
491
# self._nodes, it is faster to iterate over it in a list
494
local_keys = [key for key in keys if key in nodes]
495
if self.reference_lists:
496
for key in local_keys:
498
yield self, key, node[1], node[0]
500
for key in local_keys:
502
yield self, key, node[1]
503
# Find things that are in backing indices that have not been handled
505
if not self._backing_indices:
506
return # We won't find anything there either
507
# Remove all of the keys that we found locally
508
keys.difference_update(local_keys)
509
for backing in self._backing_indices:
514
for node in backing.iter_entries(keys):
516
yield (self,) + node[1:]
518
def iter_entries_prefix(self, keys):
519
"""Iterate over keys within the index using prefix matching.
521
Prefix matching is applied within the tuple of a key, not to within
522
the bytestring of each key element. e.g. if you have the keys ('foo',
523
'bar'), ('foobar', 'gam') and do a prefix search for ('foo', None) then
524
only the former key is returned.
526
:param keys: An iterable providing the key prefixes to be retrieved.
527
Each key prefix takes the form of a tuple the length of a key, but
528
with the last N elements 'None' rather than a regular bytestring.
529
The first element cannot be 'None'.
530
:return: An iterable as per iter_all_entries, but restricted to the
531
keys with a matching prefix to those supplied. No additional keys
532
will be returned, and every match that is in the index will be
538
for backing in self._backing_indices:
541
for node in backing.iter_entries_prefix(keys):
542
yield (self,) + node[1:]
543
if self._key_length == 1:
545
index._sanity_check_key(self, key)
547
node = self._nodes[key]
550
if self.reference_lists:
551
yield self, key, node[1], node[0]
553
yield self, key, node[1]
555
nodes_by_key = self._get_nodes_by_key()
556
for entry in index._iter_entries_prefix(self, nodes_by_key, keys):
559
def _get_nodes_by_key(self):
560
if self._nodes_by_key is None:
562
if self.reference_lists:
563
for key, (references, value) in viewitems(self._nodes):
564
key_dict = nodes_by_key
565
for subkey in key[:-1]:
566
key_dict = key_dict.setdefault(subkey, {})
567
key_dict[key[-1]] = key, value, references
569
for key, (references, value) in viewitems(self._nodes):
570
key_dict = nodes_by_key
571
for subkey in key[:-1]:
572
key_dict = key_dict.setdefault(subkey, {})
573
key_dict[key[-1]] = key, value
574
self._nodes_by_key = nodes_by_key
575
return self._nodes_by_key
578
"""Return an estimate of the number of keys in this index.
580
For InMemoryGraphIndex the estimate is exact.
582
return len(self._nodes) + sum(backing.key_count() for backing in
583
self._backing_indices if backing is not None)
586
"""In memory index's have no known corruption at the moment."""
589
class _LeafNode(dict):
590
"""A leaf node for a serialised B+Tree index."""
592
__slots__ = ('min_key', 'max_key', '_keys')
594
def __init__(self, bytes, key_length, ref_list_length):
595
"""Parse bytes to create a leaf node object."""
596
# splitlines mangles the \r delimiters.. don't use it.
597
key_list = _btree_serializer._parse_leaf_lines(bytes,
598
key_length, ref_list_length)
600
self.min_key = key_list[0][0]
601
self.max_key = key_list[-1][0]
603
self.min_key = self.max_key = None
604
super(_LeafNode, self).__init__(key_list)
605
self._keys = dict(self)
608
"""Return a sorted list of (key, (value, refs)) items"""
609
items = sorted(self.items())
613
"""Return a sorted list of all keys."""
614
keys = sorted(self.keys())
618
class _InternalNode(object):
619
"""An internal node for a serialised B+Tree index."""
621
__slots__ = ('keys', 'offset')
623
def __init__(self, bytes):
624
"""Parse bytes to create an internal node object."""
625
# splitlines mangles the \r delimiters.. don't use it.
626
self.keys = self._parse_lines(bytes.split('\n'))
628
def _parse_lines(self, lines):
630
self.offset = int(lines[1][7:])
631
as_st = static_tuple.StaticTuple.from_sequence
632
for line in lines[2:]:
635
# GZ 2017-05-24: Used to intern() each chunk of line as well, need
636
# to recheck performance and perhaps adapt StaticTuple to adjust.
637
nodes.append(as_st(line.split(b'\0')).intern())
641
class BTreeGraphIndex(object):
642
"""Access to nodes via the standard GraphIndex interface for B+Tree's.
644
Individual nodes are held in a LRU cache. This holds the root node in
645
memory except when very large walks are done.
648
def __init__(self, transport, name, size, unlimited_cache=False,
650
"""Create a B+Tree index object on the index name.
652
:param transport: The transport to read data for the index from.
653
:param name: The file name of the index on transport.
654
:param size: Optional size of the index in bytes. This allows
655
compatibility with the GraphIndex API, as well as ensuring that
656
the initial read (to read the root node header) can be done
657
without over-reading even on empty indices, and on small indices
658
allows single-IO to read the entire index.
659
:param unlimited_cache: If set to True, then instead of using an
660
LRUCache with size _NODE_CACHE_SIZE, we will use a dict and always
661
cache all leaf nodes.
662
:param offset: The start of the btree index data isn't byte 0 of the
663
file. Instead it starts at some point later.
665
self._transport = transport
669
self._recommended_pages = self._compute_recommended_pages()
670
self._root_node = None
671
self._base_offset = offset
672
self._leaf_factory = _LeafNode
673
# Default max size is 100,000 leave values
674
self._leaf_value_cache = None # lru_cache.LRUCache(100*1000)
676
self._leaf_node_cache = {}
677
self._internal_node_cache = {}
679
self._leaf_node_cache = lru_cache.LRUCache(_NODE_CACHE_SIZE)
680
# We use a FIFO here just to prevent possible blowout. However, a
681
# 300k record btree has only 3k leaf nodes, and only 20 internal
682
# nodes. A value of 100 scales to ~100*100*100 = 1M records.
683
self._internal_node_cache = fifo_cache.FIFOCache(100)
684
self._key_count = None
685
self._row_lengths = None
686
self._row_offsets = None # Start of each row, [-1] is the end
688
def __eq__(self, other):
689
"""Equal when self and other were created with the same parameters."""
691
isinstance(self, type(other)) and
692
self._transport == other._transport and
693
self._name == other._name and
694
self._size == other._size)
696
def __ne__(self, other):
697
return not self.__eq__(other)
699
def _get_and_cache_nodes(self, nodes):
700
"""Read nodes and cache them in the lru.
702
The nodes list supplied is sorted and then read from disk, each node
703
being inserted it into the _node_cache.
705
Note: Asking for more nodes than the _node_cache can contain will
706
result in some of the results being immediately discarded, to prevent
707
this an assertion is raised if more nodes are asked for than are
710
:return: A dict of {node_pos: node}
713
start_of_leaves = None
714
for node_pos, node in self._read_nodes(sorted(nodes)):
715
if node_pos == 0: # Special case
716
self._root_node = node
718
if start_of_leaves is None:
719
start_of_leaves = self._row_offsets[-2]
720
if node_pos < start_of_leaves:
721
self._internal_node_cache[node_pos] = node
723
self._leaf_node_cache[node_pos] = node
724
found[node_pos] = node
727
def _compute_recommended_pages(self):
728
"""Convert transport's recommended_page_size into btree pages.
730
recommended_page_size is in bytes, we want to know how many _PAGE_SIZE
731
pages fit in that length.
733
recommended_read = self._transport.recommended_page_size()
734
recommended_pages = int(math.ceil(recommended_read /
736
return recommended_pages
738
def _compute_total_pages_in_index(self):
739
"""How many pages are in the index.
741
If we have read the header we will use the value stored there.
742
Otherwise it will be computed based on the length of the index.
744
if self._size is None:
745
raise AssertionError('_compute_total_pages_in_index should not be'
746
' called when self._size is None')
747
if self._root_node is not None:
748
# This is the number of pages as defined by the header
749
return self._row_offsets[-1]
750
# This is the number of pages as defined by the size of the index. They
751
# should be indentical.
752
total_pages = int(math.ceil(self._size / float(_PAGE_SIZE)))
755
def _expand_offsets(self, offsets):
756
"""Find extra pages to download.
758
The idea is that we always want to make big-enough requests (like 64kB
759
for http), so that we don't waste round trips. So given the entries
760
that we already have cached and the new pages being downloaded figure
761
out what other pages we might want to read.
763
See also doc/developers/btree_index_prefetch.txt for more details.
765
:param offsets: The offsets to be read
766
:return: A list of offsets to download
768
if 'index' in debug.debug_flags:
769
trace.mutter('expanding: %s\toffsets: %s', self._name, offsets)
771
if len(offsets) >= self._recommended_pages:
772
# Don't add more, we are already requesting more than enough
773
if 'index' in debug.debug_flags:
774
trace.mutter(' not expanding large request (%s >= %s)',
775
len(offsets), self._recommended_pages)
777
if self._size is None:
778
# Don't try anything, because we don't know where the file ends
779
if 'index' in debug.debug_flags:
780
trace.mutter(' not expanding without knowing index size')
782
total_pages = self._compute_total_pages_in_index()
783
cached_offsets = self._get_offsets_to_cached_pages()
784
# If reading recommended_pages would read the rest of the index, just
786
if total_pages - len(cached_offsets) <= self._recommended_pages:
787
# Read whatever is left
789
expanded = [x for x in range(total_pages)
790
if x not in cached_offsets]
792
expanded = list(range(total_pages))
793
if 'index' in debug.debug_flags:
794
trace.mutter(' reading all unread pages: %s', expanded)
797
if self._root_node is None:
798
# ATM on the first read of the root node of a large index, we don't
799
# bother pre-reading any other pages. This is because the
800
# likelyhood of actually reading interesting pages is very low.
801
# See doc/developers/btree_index_prefetch.txt for a discussion, and
802
# a possible implementation when we are guessing that the second
803
# layer index is small
804
final_offsets = offsets
806
tree_depth = len(self._row_lengths)
807
if len(cached_offsets) < tree_depth and len(offsets) == 1:
808
# We haven't read enough to justify expansion
809
# If we are only going to read the root node, and 1 leaf node,
810
# then it isn't worth expanding our request. Once we've read at
811
# least 2 nodes, then we are probably doing a search, and we
812
# start expanding our requests.
813
if 'index' in debug.debug_flags:
814
trace.mutter(' not expanding on first reads')
816
final_offsets = self._expand_to_neighbors(offsets, cached_offsets,
819
final_offsets = sorted(final_offsets)
820
if 'index' in debug.debug_flags:
821
trace.mutter('expanded: %s', final_offsets)
824
def _expand_to_neighbors(self, offsets, cached_offsets, total_pages):
825
"""Expand requests to neighbors until we have enough pages.
827
This is called from _expand_offsets after policy has determined that we
829
We only want to expand requests within a given layer. We cheat a little
830
bit and assume all requests will be in the same layer. This is true
831
given the current design, but if it changes this algorithm may perform
834
:param offsets: requested offsets
835
:param cached_offsets: offsets for pages we currently have cached
836
:return: A set() of offsets after expansion
838
final_offsets = set(offsets)
840
new_tips = set(final_offsets)
841
while len(final_offsets) < self._recommended_pages and new_tips:
845
first, end = self._find_layer_first_and_end(pos)
848
and previous not in cached_offsets
849
and previous not in final_offsets
850
and previous >= first):
851
next_tips.add(previous)
853
if (after < total_pages
854
and after not in cached_offsets
855
and after not in final_offsets
858
# This would keep us from going bigger than
859
# recommended_pages by only expanding the first offsets.
860
# However, if we are making a 'wide' request, it is
861
# reasonable to expand all points equally.
862
# if len(final_offsets) > recommended_pages:
864
final_offsets.update(next_tips)
868
def clear_cache(self):
869
"""Clear out any cached/memoized values.
871
This can be called at any time, but generally it is used when we have
872
extracted some information, but don't expect to be requesting any more
875
# Note that we don't touch self._root_node or self._internal_node_cache
876
# We don't expect either of those to be big, and it can save
877
# round-trips in the future. We may re-evaluate this if InternalNode
878
# memory starts to be an issue.
879
self._leaf_node_cache.clear()
881
def external_references(self, ref_list_num):
882
if self._root_node is None:
883
self._get_root_node()
884
if ref_list_num + 1 > self.node_ref_lists:
885
raise ValueError('No ref list %d, index has %d ref lists'
886
% (ref_list_num, self.node_ref_lists))
889
for node in self.iter_all_entries():
891
refs.update(node[3][ref_list_num])
894
def _find_layer_first_and_end(self, offset):
895
"""Find the start/stop nodes for the layer corresponding to offset.
897
:return: (first, end)
898
first is the first node in this layer
899
end is the first node of the next layer
902
for roffset in self._row_offsets:
909
def _get_offsets_to_cached_pages(self):
910
"""Determine what nodes we already have cached."""
911
cached_offsets = set(self._internal_node_cache)
912
# cache may be dict or LRUCache, keys() is the common method
913
cached_offsets.update(self._leaf_node_cache.keys())
914
if self._root_node is not None:
915
cached_offsets.add(0)
916
return cached_offsets
918
def _get_root_node(self):
919
if self._root_node is None:
920
# We may not have a root node yet
921
self._get_internal_nodes([0])
922
return self._root_node
924
def _get_nodes(self, cache, node_indexes):
927
for idx in node_indexes:
928
if idx == 0 and self._root_node is not None:
929
found[0] = self._root_node
932
found[idx] = cache[idx]
937
needed = self._expand_offsets(needed)
938
found.update(self._get_and_cache_nodes(needed))
941
def _get_internal_nodes(self, node_indexes):
942
"""Get a node, from cache or disk.
944
After getting it, the node will be cached.
946
return self._get_nodes(self._internal_node_cache, node_indexes)
948
def _cache_leaf_values(self, nodes):
949
"""Cache directly from key => value, skipping the btree."""
950
if self._leaf_value_cache is not None:
951
for node in viewvalues(nodes):
952
for key, value in node.all_items():
953
if key in self._leaf_value_cache:
954
# Don't add the rest of the keys, we've seen this node
957
self._leaf_value_cache[key] = value
959
def _get_leaf_nodes(self, node_indexes):
960
"""Get a bunch of nodes, from cache or disk."""
961
found = self._get_nodes(self._leaf_node_cache, node_indexes)
962
self._cache_leaf_values(found)
965
def iter_all_entries(self):
966
"""Iterate over all keys within the index.
968
:return: An iterable of (index, key, value) or (index, key, value, reference_lists).
969
The former tuple is used when there are no reference lists in the
970
index, making the API compatible with simple key:value index types.
971
There is no defined order for the result iteration - it will be in
972
the most efficient order for the index.
974
if 'evil' in debug.debug_flags:
975
trace.mutter_callsite(3,
976
"iter_all_entries scales with size of history.")
977
if not self.key_count():
979
if self._row_offsets[-1] == 1:
980
# There is only the root node, and we read that via key_count()
981
if self.node_ref_lists:
982
for key, (value, refs) in self._root_node.all_items():
983
yield (self, key, value, refs)
985
for key, (value, refs) in self._root_node.all_items():
986
yield (self, key, value)
988
start_of_leaves = self._row_offsets[-2]
989
end_of_leaves = self._row_offsets[-1]
990
needed_offsets = list(range(start_of_leaves, end_of_leaves))
991
if needed_offsets == [0]:
992
# Special case when we only have a root node, as we have already
994
nodes = [(0, self._root_node)]
996
nodes = self._read_nodes(needed_offsets)
997
# We iterate strictly in-order so that we can use this function
998
# for spilling index builds to disk.
999
if self.node_ref_lists:
1000
for _, node in nodes:
1001
for key, (value, refs) in node.all_items():
1002
yield (self, key, value, refs)
1004
for _, node in nodes:
1005
for key, (value, refs) in node.all_items():
1006
yield (self, key, value)
1009
def _multi_bisect_right(in_keys, fixed_keys):
1010
"""Find the positions where each 'in_key' would fit in fixed_keys.
1012
This is equivalent to doing "bisect_right" on each in_key into
1015
:param in_keys: A sorted list of keys to match with fixed_keys
1016
:param fixed_keys: A sorted list of keys to match against
1017
:return: A list of (integer position, [key list]) tuples.
1022
# no pointers in the fixed_keys list, which means everything must
1024
return [(0, in_keys)]
1026
# TODO: Iterating both lists will generally take M + N steps
1027
# Bisecting each key will generally take M * log2 N steps.
1028
# If we had an efficient way to compare, we could pick the method
1029
# based on which has the fewer number of steps.
1030
# There is also the argument that bisect_right is a compiled
1031
# function, so there is even more to be gained.
1032
# iter_steps = len(in_keys) + len(fixed_keys)
1033
# bisect_steps = len(in_keys) * math.log(len(fixed_keys), 2)
1034
if len(in_keys) == 1: # Bisect will always be faster for M = 1
1035
return [(bisect.bisect_right(fixed_keys, in_keys[0]), in_keys)]
1036
# elif bisect_steps < iter_steps:
1038
# for key in in_keys:
1039
# offsets.setdefault(bisect_right(fixed_keys, key),
1041
# return [(o, offsets[o]) for o in sorted(offsets)]
1042
in_keys_iter = iter(in_keys)
1043
fixed_keys_iter = enumerate(fixed_keys)
1044
cur_in_key = next(in_keys_iter)
1045
cur_fixed_offset, cur_fixed_key = next(fixed_keys_iter)
1047
class InputDone(Exception): pass
1048
class FixedDone(Exception): pass
1053
# TODO: Another possibility is that rather than iterating on each side,
1054
# we could use a combination of bisecting and iterating. For
1055
# example, while cur_in_key < fixed_key, bisect to find its
1056
# point, then iterate all matching keys, then bisect (restricted
1057
# to only the remainder) for the next one, etc.
1060
if cur_in_key < cur_fixed_key:
1062
cur_out = (cur_fixed_offset, cur_keys)
1063
output.append(cur_out)
1064
while cur_in_key < cur_fixed_key:
1065
cur_keys.append(cur_in_key)
1067
cur_in_key = next(in_keys_iter)
1068
except StopIteration:
1070
# At this point cur_in_key must be >= cur_fixed_key
1071
# step the cur_fixed_key until we pass the cur key, or walk off
1073
while cur_in_key >= cur_fixed_key:
1075
cur_fixed_offset, cur_fixed_key = next(fixed_keys_iter)
1076
except StopIteration:
1079
# We consumed all of the input, nothing more to do
1082
# There was some input left, but we consumed all of fixed, so we
1083
# have to add one more for the tail
1084
cur_keys = [cur_in_key]
1085
cur_keys.extend(in_keys_iter)
1086
cur_out = (len(fixed_keys), cur_keys)
1087
output.append(cur_out)
1090
def _walk_through_internal_nodes(self, keys):
1091
"""Take the given set of keys, and find the corresponding LeafNodes.
1093
:param keys: An unsorted iterable of keys to search for
1094
:return: (nodes, index_and_keys)
1095
nodes is a dict mapping {index: LeafNode}
1096
keys_at_index is a list of tuples of [(index, [keys for Leaf])]
1098
# 6 seconds spent in miss_torture using the sorted() line.
1099
# Even with out of order disk IO it seems faster not to sort it when
1100
# large queries are being made.
1101
keys_at_index = [(0, sorted(keys))]
1103
for row_pos, next_row_start in enumerate(self._row_offsets[1:-1]):
1104
node_indexes = [idx for idx, s_keys in keys_at_index]
1105
nodes = self._get_internal_nodes(node_indexes)
1107
next_nodes_and_keys = []
1108
for node_index, sub_keys in keys_at_index:
1109
node = nodes[node_index]
1110
positions = self._multi_bisect_right(sub_keys, node.keys)
1111
node_offset = next_row_start + node.offset
1112
next_nodes_and_keys.extend([(node_offset + pos, s_keys)
1113
for pos, s_keys in positions])
1114
keys_at_index = next_nodes_and_keys
1115
# We should now be at the _LeafNodes
1116
node_indexes = [idx for idx, s_keys in keys_at_index]
1118
# TODO: We may *not* want to always read all the nodes in one
1119
# big go. Consider setting a max size on this.
1120
nodes = self._get_leaf_nodes(node_indexes)
1121
return nodes, keys_at_index
1123
def iter_entries(self, keys):
1124
"""Iterate over keys within the index.
1126
:param keys: An iterable providing the keys to be retrieved.
1127
:return: An iterable as per iter_all_entries, but restricted to the
1128
keys supplied. No additional keys will be returned, and every
1129
key supplied that is in the index will be returned.
1131
# 6 seconds spent in miss_torture using the sorted() line.
1132
# Even with out of order disk IO it seems faster not to sort it when
1133
# large queries are being made.
1134
# However, now that we are doing multi-way bisecting, we need the keys
1135
# in sorted order anyway. We could change the multi-way code to not
1136
# require sorted order. (For example, it bisects for the first node,
1137
# does an in-order search until a key comes before the current point,
1138
# which it then bisects for, etc.)
1139
keys = frozenset(keys)
1143
if not self.key_count():
1147
if self._leaf_value_cache is None:
1151
value = self._leaf_value_cache.get(key, None)
1152
if value is not None:
1153
# This key is known not to be here, skip it
1155
if self.node_ref_lists:
1156
yield (self, key, value, refs)
1158
yield (self, key, value)
1160
needed_keys.append(key)
1166
nodes, nodes_and_keys = self._walk_through_internal_nodes(needed_keys)
1167
for node_index, sub_keys in nodes_and_keys:
1170
node = nodes[node_index]
1171
for next_sub_key in sub_keys:
1172
if next_sub_key in node:
1173
value, refs = node[next_sub_key]
1174
if self.node_ref_lists:
1175
yield (self, next_sub_key, value, refs)
1177
yield (self, next_sub_key, value)
1179
def _find_ancestors(self, keys, ref_list_num, parent_map, missing_keys):
1180
"""Find the parent_map information for the set of keys.
1182
This populates the parent_map dict and missing_keys set based on the
1183
queried keys. It also can fill out an arbitrary number of parents that
1184
it finds while searching for the supplied keys.
1186
It is unlikely that you want to call this directly. See
1187
"CombinedGraphIndex.find_ancestry()" for a more appropriate API.
1189
:param keys: A keys whose ancestry we want to return
1190
Every key will either end up in 'parent_map' or 'missing_keys'.
1191
:param ref_list_num: This index in the ref_lists is the parents we
1193
:param parent_map: {key: parent_keys} for keys that are present in this
1194
index. This may contain more entries than were in 'keys', that are
1195
reachable ancestors of the keys requested.
1196
:param missing_keys: keys which are known to be missing in this index.
1197
This may include parents that were not directly requested, but we
1198
were able to determine that they are not present in this index.
1199
:return: search_keys parents that were found but not queried to know
1200
if they are missing or present. Callers can re-query this index for
1201
those keys, and they will be placed into parent_map or missing_keys
1203
if not self.key_count():
1204
# We use key_count() to trigger reading the root node and
1205
# determining info about this BTreeGraphIndex
1206
# If we don't have any keys, then everything is missing
1207
missing_keys.update(keys)
1209
if ref_list_num >= self.node_ref_lists:
1210
raise ValueError('No ref list %d, index has %d ref lists'
1211
% (ref_list_num, self.node_ref_lists))
1213
# The main trick we are trying to accomplish is that when we find a
1214
# key listing its parents, we expect that the parent key is also likely
1215
# to sit on the same page. Allowing us to expand parents quickly
1216
# without suffering the full stack of bisecting, etc.
1217
nodes, nodes_and_keys = self._walk_through_internal_nodes(keys)
1219
# These are parent keys which could not be immediately resolved on the
1220
# page where the child was present. Note that we may already be
1221
# searching for that key, and it may actually be present [or known
1222
# missing] on one of the other pages we are reading.
1224
# We could try searching for them in the immediate previous or next
1225
# page. If they occur "later" we could put them in a pending lookup
1226
# set, and then for each node we read thereafter we could check to
1227
# see if they are present.
1228
# However, we don't know the impact of keeping this list of things
1229
# that I'm going to search for every node I come across from here on
1231
# It doesn't handle the case when the parent key is missing on a
1232
# page that we *don't* read. So we already have to handle being
1233
# re-entrant for that.
1234
# Since most keys contain a date string, they are more likely to be
1235
# found earlier in the file than later, but we would know that right
1236
# away (key < min_key), and wouldn't keep searching it on every other
1237
# page that we read.
1238
# Mostly, it is an idea, one which should be benchmarked.
1239
parents_not_on_page = set()
1241
for node_index, sub_keys in nodes_and_keys:
1244
# sub_keys is all of the keys we are looking for that should exist
1245
# on this page, if they aren't here, then they won't be found
1246
node = nodes[node_index]
1247
parents_to_check = set()
1248
for next_sub_key in sub_keys:
1249
if next_sub_key not in node:
1250
# This one is just not present in the index at all
1251
missing_keys.add(next_sub_key)
1253
value, refs = node[next_sub_key]
1254
parent_keys = refs[ref_list_num]
1255
parent_map[next_sub_key] = parent_keys
1256
parents_to_check.update(parent_keys)
1257
# Don't look for things we've already found
1258
parents_to_check = parents_to_check.difference(parent_map)
1259
# this can be used to test the benefit of having the check loop
1261
# parents_not_on_page.update(parents_to_check)
1263
while parents_to_check:
1264
next_parents_to_check = set()
1265
for key in parents_to_check:
1267
value, refs = node[key]
1268
parent_keys = refs[ref_list_num]
1269
parent_map[key] = parent_keys
1270
next_parents_to_check.update(parent_keys)
1272
# This parent either is genuinely missing, or should be
1273
# found on another page. Perf test whether it is better
1274
# to check if this node should fit on this page or not.
1275
# in the 'everything-in-one-pack' scenario, this *not*
1276
# doing the check is 237ms vs 243ms.
1277
# So slightly better, but I assume the standard 'lots
1278
# of packs' is going to show a reasonable improvement
1279
# from the check, because it avoids 'going around
1280
# again' for everything that is in another index
1281
# parents_not_on_page.add(key)
1282
# Missing for some reason
1283
if key < node.min_key:
1284
# in the case of bzr.dev, 3.4k/5.3k misses are
1285
# 'earlier' misses (65%)
1286
parents_not_on_page.add(key)
1287
elif key > node.max_key:
1288
# This parent key would be present on a different
1290
parents_not_on_page.add(key)
1292
# assert key != node.min_key and key != node.max_key
1293
# If it was going to be present, it would be on
1294
# *this* page, so mark it missing.
1295
missing_keys.add(key)
1296
parents_to_check = next_parents_to_check.difference(parent_map)
1297
# Might want to do another .difference() from missing_keys
1298
# parents_not_on_page could have been found on a different page, or be
1299
# known to be missing. So cull out everything that has already been
1301
search_keys = parents_not_on_page.difference(
1302
parent_map).difference(missing_keys)
1305
def iter_entries_prefix(self, keys):
1306
"""Iterate over keys within the index using prefix matching.
1308
Prefix matching is applied within the tuple of a key, not to within
1309
the bytestring of each key element. e.g. if you have the keys ('foo',
1310
'bar'), ('foobar', 'gam') and do a prefix search for ('foo', None) then
1311
only the former key is returned.
1313
WARNING: Note that this method currently causes a full index parse
1314
unconditionally (which is reasonably appropriate as it is a means for
1315
thunking many small indices into one larger one and still supplies
1316
iter_all_entries at the thunk layer).
1318
:param keys: An iterable providing the key prefixes to be retrieved.
1319
Each key prefix takes the form of a tuple the length of a key, but
1320
with the last N elements 'None' rather than a regular bytestring.
1321
The first element cannot be 'None'.
1322
:return: An iterable as per iter_all_entries, but restricted to the
1323
keys with a matching prefix to those supplied. No additional keys
1324
will be returned, and every match that is in the index will be
1327
keys = sorted(set(keys))
1330
# Load if needed to check key lengths
1331
if self._key_count is None:
1332
self._get_root_node()
1333
# TODO: only access nodes that can satisfy the prefixes we are looking
1334
# for. For now, to meet API usage (as this function is not used by
1335
# current breezy) just suck the entire index and iterate in memory.
1337
if self.node_ref_lists:
1338
if self._key_length == 1:
1339
for _1, key, value, refs in self.iter_all_entries():
1340
nodes[key] = value, refs
1343
for _1, key, value, refs in self.iter_all_entries():
1344
key_value = key, value, refs
1345
# For a key of (foo, bar, baz) create
1346
# _nodes_by_key[foo][bar][baz] = key_value
1347
key_dict = nodes_by_key
1348
for subkey in key[:-1]:
1349
key_dict = key_dict.setdefault(subkey, {})
1350
key_dict[key[-1]] = key_value
1352
if self._key_length == 1:
1353
for _1, key, value in self.iter_all_entries():
1357
for _1, key, value in self.iter_all_entries():
1358
key_value = key, value
1359
# For a key of (foo, bar, baz) create
1360
# _nodes_by_key[foo][bar][baz] = key_value
1361
key_dict = nodes_by_key
1362
for subkey in key[:-1]:
1363
key_dict = key_dict.setdefault(subkey, {})
1364
key_dict[key[-1]] = key_value
1365
if self._key_length == 1:
1367
index._sanity_check_key(self, key)
1369
if self.node_ref_lists:
1370
value, node_refs = nodes[key]
1371
yield self, key, value, node_refs
1373
yield self, key, nodes[key]
1377
for entry in index._iter_entries_prefix(self, nodes_by_key, keys):
1380
def key_count(self):
1381
"""Return an estimate of the number of keys in this index.
1383
For BTreeGraphIndex the estimate is exact as it is contained in the
1386
if self._key_count is None:
1387
self._get_root_node()
1388
return self._key_count
1390
def _compute_row_offsets(self):
1391
"""Fill out the _row_offsets attribute based on _row_lengths."""
1394
for row in self._row_lengths:
1395
offsets.append(row_offset)
1397
offsets.append(row_offset)
1398
self._row_offsets = offsets
1400
def _parse_header_from_bytes(self, bytes):
1401
"""Parse the header from a region of bytes.
1403
:param bytes: The data to parse.
1404
:return: An offset, data tuple such as readv yields, for the unparsed
1405
data. (which may be of length 0).
1407
signature = bytes[0:len(self._signature())]
1408
if not signature == self._signature():
1409
raise errors.BadIndexFormatSignature(self._name, BTreeGraphIndex)
1410
lines = bytes[len(self._signature()):].splitlines()
1411
options_line = lines[0]
1412
if not options_line.startswith(_OPTION_NODE_REFS):
1413
raise errors.BadIndexOptions(self)
1415
self.node_ref_lists = int(options_line[len(_OPTION_NODE_REFS):])
1417
raise errors.BadIndexOptions(self)
1418
options_line = lines[1]
1419
if not options_line.startswith(_OPTION_KEY_ELEMENTS):
1420
raise errors.BadIndexOptions(self)
1422
self._key_length = int(options_line[len(_OPTION_KEY_ELEMENTS):])
1424
raise errors.BadIndexOptions(self)
1425
options_line = lines[2]
1426
if not options_line.startswith(_OPTION_LEN):
1427
raise errors.BadIndexOptions(self)
1429
self._key_count = int(options_line[len(_OPTION_LEN):])
1431
raise errors.BadIndexOptions(self)
1432
options_line = lines[3]
1433
if not options_line.startswith(_OPTION_ROW_LENGTHS):
1434
raise errors.BadIndexOptions(self)
1436
self._row_lengths = [int(length) for length in
1437
options_line[len(_OPTION_ROW_LENGTHS):].split(',')
1440
raise errors.BadIndexOptions(self)
1441
self._compute_row_offsets()
1443
# calculate the bytes we have processed
1444
header_end = (len(signature) + sum(map(len, lines[0:4])) + 4)
1445
return header_end, bytes[header_end:]
1447
def _read_nodes(self, nodes):
1448
"""Read some nodes from disk into the LRU cache.
1450
This performs a readv to get the node data into memory, and parses each
1451
node, then yields it to the caller. The nodes are requested in the
1452
supplied order. If possible doing sort() on the list before requesting
1453
a read may improve performance.
1455
:param nodes: The nodes to read. 0 - first node, 1 - second node etc.
1458
# may be the byte string of the whole file
1460
# list of (offset, length) regions of the file that should, evenually
1461
# be read in to data_ranges, either from 'bytes' or from the transport
1463
base_offset = self._base_offset
1465
offset = (index * _PAGE_SIZE)
1468
# Root node - special case
1470
size = min(_PAGE_SIZE, self._size)
1472
# The only case where we don't know the size, is for very
1473
# small indexes. So we read the whole thing
1474
bytes = self._transport.get_bytes(self._name)
1475
num_bytes = len(bytes)
1476
self._size = num_bytes - base_offset
1477
# the whole thing should be parsed out of 'bytes'
1478
ranges = [(start, min(_PAGE_SIZE, num_bytes - start))
1479
for start in range(base_offset, num_bytes, _PAGE_SIZE)]
1482
if offset > self._size:
1483
raise AssertionError('tried to read past the end'
1484
' of the file %s > %s'
1485
% (offset, self._size))
1486
size = min(size, self._size - offset)
1487
ranges.append((base_offset + offset, size))
1490
elif bytes is not None:
1491
# already have the whole file
1492
data_ranges = [(start, bytes[start:start+size])
1493
for start, size in ranges]
1494
elif self._file is None:
1495
data_ranges = self._transport.readv(self._name, ranges)
1498
for offset, size in ranges:
1499
self._file.seek(offset)
1500
data_ranges.append((offset, self._file.read(size)))
1501
for offset, data in data_ranges:
1502
offset -= base_offset
1504
# extract the header
1505
offset, data = self._parse_header_from_bytes(data)
1508
bytes = zlib.decompress(data)
1509
if bytes.startswith(_LEAF_FLAG):
1510
node = self._leaf_factory(bytes, self._key_length,
1511
self.node_ref_lists)
1512
elif bytes.startswith(_INTERNAL_FLAG):
1513
node = _InternalNode(bytes)
1515
raise AssertionError("Unknown node type for %r" % bytes)
1516
yield offset / _PAGE_SIZE, node
1518
def _signature(self):
1519
"""The file signature for this index type."""
1523
"""Validate that everything in the index can be accessed."""
1524
# just read and parse every node.
1525
self._get_root_node()
1526
if len(self._row_lengths) > 1:
1527
start_node = self._row_offsets[1]
1529
# We shouldn't be reading anything anyway
1531
node_end = self._row_offsets[-1]
1532
for node in self._read_nodes(list(range(start_node, node_end))):
1536
_gcchk_factory = _LeafNode
1539
from breezy import _btree_serializer_pyx as _btree_serializer
1540
_gcchk_factory = _btree_serializer._parse_into_chk
1541
except ImportError as e:
1542
osutils.failed_to_load_extension(e)
1543
from breezy import _btree_serializer_py as _btree_serializer